
Power Quality

Compensazione dinamica e ibrida Filtrazione delle armoniche attiva e ibrida

Da alcuni anni, molti tipi di applicazioni mostrano una attenzione crescente per la Power Quality dove i carichi impiegati nel processo produttivo possono influire negativamente sull'impianto elettrico, riducendo – anche drasticamente – la qualità della stessa energia. Una qualità dell'energia elettrica insufficiente si ripercuote quindi sull'efficienza dei sistemi, sulla loro disponibilità, sulla qualità delle lavorazioni, sull'affidabilità dei macchinari, sulla sicurezza, e infine sui costi di gestione.

Per «qualità dell'energia» si intende:

- la continuità dell'alimentazione, intesa come assenza di interruzioni nella fornitura del servizio elettrico
- La caratteristica della tensione e della corrente, intesa come qualità della forma d'onda (ampiezza, frequenza, variazioni, ecc.).

La crescente diffusione di apparecchiature basate su controlli a microprocessore e componenti di elettronica di potenza utilizzate nei processi produttivi hanno contribuito enormemente al verificarsi di disturbi delle grandezze elettriche nelle reti. La panoramica dei problemi di Power Quality spaziano dagli sganci intempestivi degli interruttori automatici, surriscaldamento del neutro, flicker, blocco di apparati elettronici, sovraccarichi

Le **armoniche** sono disturbi, in tensione e in corrente, che distorcono la forma originale della sinusoide, ed hanno una frequenza multipla rispetto a quella fondamentale a (es. n x 50Hz).

Queste frequenze indesiderate causano numerosi sintomi, tra cui il surriscaldamento del conduttore neutro (vedi effetto della terza armonica) e dei trasformatori di alimentazione che alimentano tali circuiti.

Le armoniche hanno origine dall'azione svolta da carichi non lineari, come i convertitori statici, gli azionamenti a velocità variabile, le saldatrici ad arco, i controlli di potenza a diodi controllati, ecc.

In termini complessivi, le armoniche di corrente sono in grado di ridurre il rendimento di un sistema elettrico, di danneggiarne gli isolanti- sulle linee e sulle utenze - e di creare anomalie di funzionamento su diversi componenti. Quando si verificano sintomi relativi ad armoniche, è necessario effettuare una campagna di misure osservando la distorsione armonica totale (THD).

Un aumento significativo della THD al variare delle condizioni di carico permette di stabilire un confronto in termini percentuali del livello di corrente di ogni singola armonica rispetto al flusso di corrente totale della fondamentale nel sistema. Conoscere gli effetti provocati da ogni corrente armonica e confrontarli con i sintomi identificati aiuta svolgere la ricerca guasti. L'origine dell'armonica deve quindi essere isolata e risolta attraverso l'opportuna installazione di filtri armonici.

Il **fattore di potenza** è fondamentale per la power quality in quanto regola l'eccessiva potenza reattiva e riduce le correnti non necessarie così come le cadute di tensione.

Questo implica un abbattimento delle perdite per effetto joule e quindi l'immediato miglioramento delle linee e dei componenti che costituiscono l'impianto: infatti si riduce il carico dei trasformatori e delle linee, ed è possibile evitare sovradimensionamenti in fase di progettazione o di ampliamento. Installare batterie di condensatori adeguatamente dimensionati è pertanto il primo intervento da prendere in considerazione, richiedendo apparecchiature di rifasamento dotate di induttanze di blocco in presenza di armoniche.

La **variazione di frequenza** è, appunto, una alterazione della frequenza di rete rispetto a quella nominale. Come valore medio, la Norma assume quello misurato entro un intervallo di 10 secondi.

La frequenza europea di 50 Hz deve mantenersi per il 95% dell'anno di fornitura entro una tolleranza di ±1%, mentre, in qualsiasi momento, non deve superare un incremento del 4% o un decremento del 6%. Ciò che sta all'origine di una variazione di frequenza sono i guasti nel sistema di generazione e di trasmissione, oppure anche le disattivazioni improvvise di grandi generatori. Gli effetti negativi si manifestano in termini di variazione di velocità dei motori e di possibili anomalie funzionali sulle apparecchiature elettroniche.

Il **transitorio** (impulsivo/oscillatorio) è una variazione temporanea di tensione di un circuito elettrico, a causa di un disturbo, provocato da sovratensioni di manovra o correnti nelle induttanze serie.

I transitori di tensione possono causare sintomi che vanno dal blocco di computer e dal danneggiamento di apparecchiature elettroniche, al verificarsi di scariche e al danneggiamento dell'isolamento delle apparecchiature di distribuzione. Si manifestano con notevoli aumenti di tensione, con una durata pari a solo alcuni microsecondi e sono spesso causati da fulmini e dalle anomale commutazioni di batterie di condensatori, oppure dal ritorno in funzione di sistemi dopo un'interruzione dell'alimentazione, dalla commutazione di carichi costituiti da motori, dall'accensione o lo spegnimento di carichi costituiti da lampade fluorescenti o lampade a scarica ad alta intensità, dalla commutazione di trasformatori o infine dall'arresto brusco di alcuni tipi di apparecchiature.

In presenza di transitori è necessario effettuare il monitoraggio sul carico così da associare i problemi di funzionamento o i guasti delle attrezzature con gli eventi che si verificano nell'impianto di distribuzione.

Il **flicker** è un fenomeno prodotto dalle variazioni repentine e ripetitive della tensione. Le cause possono essere varie: dall'inserzione e disinserzione di grandi carichi all'avviamento di motori, dalla presenza di forni ad arco a frantumatori di grande potenza, così come dall'utilizzo di sistemi di saldatura o di convertitori.

A seconda di quanto siano dinamiche le variazioni del carico, <u>la potenza di compensazione</u> può essere immessa tramite impianti di compensazione dinamica e/o filtri attivi della potenza della rete. In ogni caso, per il dimensionamento di una compensazione dei flicker è necessaria una misurazione degli andamenti del carico sul breve termine.

Lo **squilbrio di tensione** è uno dei problemi di più comuni nelle reti elettriche e si verifica quando una fase è caricata in modo eccessivo assumendo un valore di tensione diverso rispetto alle altre fasi.

Essendo spesso trascurati, gli squilibri possono diventare causa di gravi danni ad apparecchiature elettriche ed elettroniche, in particolar modo, a trasformatori e motori trifase che, in presenza di asimmetrie, potrebbero essere soggetti a problematiche di surriscaldamento, rumorosità anomala, vibrazioni eccessive e guasti prematuri. Infatti, in un motore con tensione a 400V, squilibri di tensione apparentemente contenuti (2-3%), provocano uno squilibrio in corrente che può superare il 20%, con un innalzamento della temperatura di oltre 30 °C. In questi casi è necessario dotarsi di uno stabilizzatore di tensione, che rilevi e compensi gli squilibri di tensione in modo automatico ed indipendentemente su ogni fase.

Le **variazioni di tensione** includono gli abbassamenti o gli innalzamenti della tensione e <u>si risolvono installando uno stabilizzatore di tensione che</u> garantisce una tensione in uscita nell'intorno della nominale.

I cali di tensione sono responsabili della maggior parte dei problemi di power quality e si verificano quando la tensione scende al di sotto del 90% e fino al 10% (al di sotto diventa interruzione) del suo valore nominale.

Tra i sintomi più comuni dei cali vi sono l'attenuazione delle luci a incandescenza, il blocco dei calcolatori, gli arresti di apparecchiature elettroniche sensibili, la perdita di dati (memoria) di controllori programmabili e problemi nel comando di relè.

Gli sbalzi di tensione oltre il 110% del valore nominale) capitano con minore frequenza, ma possono causare la rottura dell'apparecchiatura spesso ione di alimentazione dell'elettronica.

Alcuni guasti potrebbero non avvenire subito, provocando la rottura prematura dei componenti.

Tra le principali cause degli sbalzi vi sono lo spegnimento improvviso di grossi carichi e dalla anomala commutazione dei condensatori di rifasamento.

COMAR investe sulla Power Quality

L'esperienza maturata nel settore dell'efficienza energetica, come leader nella progettazione delle migliori soluzioni di compensazione, ha consentito a COMAR di entrare in contatto con realtà industriali ad alto fabbisogno energetico, quali le industrie siderurgiche, petrolchimiche, cartarie, del packaging, del cemento e automobilistiche. Grazie a questa esperienza e ad accordi strategici con partner specializzati COMAR ès stata in grado di affiancare ai sistemi di rifasamento, soluzioni di filtraggio armonico attivo, rifasamento dinamico e di sviluppare internamente la linea del rifasamento ibrido.

L'offerta di valore si allarga ulteriormente, grazie all'istituzione di un <u>team dedicato alla</u> Power Quality in grado di supportare le aziende con una serie di servizi su misura, quali:

Misure di Power Quality e Analisi di Rete

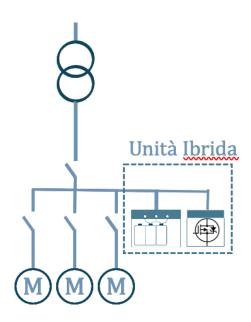
Armoniche di tensione e corrente Curve di compatibilità Squilibrio dei carichi e della tensione Potenza attiva, reattiva e distorcente Identificazione anomalie, sorgenti disturbo, definizione delle soluzioni

Misure di Power Quality test EN50160

Analisi della frequenza
Variazioni della tensione
Severità del flicker
Squilibrio della tensione
Armoniche di tensione
Eventi di tensione, interruzioni, buchi e sovratensioni
Report EN50160

Strumentazioni utilizzate, in funzione del tipo di analisi: analizzatore in classe S o in classe A. secondo IEC61000-4-30.

Rifasamento Ibrido



Cos'è la compensazione attiva ibrida?

Tradizionalmente, la scarsa qualità dell'alimentazione è stata affrontata attraverso l'integrazione di un dispositivo dedicato e mirato a risolvere lo specifico problema.

- Un'unità di correzione del fattore di potenza è utilizzata se il fattore di potenza è inadeguato.
- Un filtro armonico (attivo o passivo) è utilizzato se le armoniche sono identificate come un problema.

I progressi nella tecnologia diagnostica hanno portato al riconoscimento del fatto che i problemi di qualità dell'alimentazione derivano dalla combinazione di problemi diversi e che è necessaria una soluzione più flessibile – **ibrida** - che integri la risoluzione dei problemi in un'unica apparecchiatura.

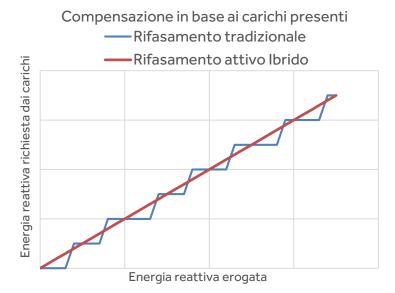
Come funziona?

La correzione attiva ibrida del fattore di potenza **(HSVG)** combina i vantaggi tecnologici della generazione dinamica con la potenza discreta dei banchi di condensatori classici, pilotati da contattori o da tiristori.

Connessa in parallelo all'alimentazione dei carichi, l'unità ibrida fornisce una sorgente di corrente, dinamica e controllata, in grado di adattarsi in **tempo reale** alle variazioni della rete.

Grazie alla logica integrata il sistema è in grado di gestire **contemporaneamente** i gradini dei banchi di condensatori che forniscono la potenza reattiva capacitiva fondamentale, e la potenza dinamica (sia capacitiva sia induttiva) fornita dal sistema attivo integrato

L'integrazione delle due tecnologie all'interno dell'unità ibrida consente la compensazione simultanea della **potenza reattiva**, la riduzione delle **oscillazioni della tensione**, la mitigazione del **flicker** e dello **sbilanciamento i**n rete in un'unica apparecchiatura.


Benefici

La soluzione di compensazione **ibrida** risolve una serie di problematiche **aggiuntive** rispetto ai tradizionali rifasatori o filtri passivi:

- variazioni e fluttuazioni di tensione
- Immissione di energia reattiva in rete sia capacitiva sia induttiva
- squilibrio tra fasi.
- Costi contenuti rispetto ad un sistema dinamico 'puro' grazie alla tecnologia tradizionale per abbattere il prelievo di energia reattiva dalla rete

Con l'efficienza data dal controllo elettronico

- Uscita dinamica continua e lineare: i tipici "gradini" dei sistemi con i soli banchi di condensatori o banchi di induttanze sono eliminati dalla componente SVG.
- Tempi di reazione immediati
- Il display Human-Machine-Interface consente un controllo intuitivo e semplice.

Dove è necessaria?

Compensazione dei carichi fortemente variabili

- Macchine utensili, Presse, Taglio Laser/Plasma
- Gru, Carriponte, Ascensori
- Impianti fotovoltaici ed eolici
- Forni ad arco elettrico
- Trazione elettrica (ferroviario, funivie)
- Mulini
- Pompe
- Estrusori

Compensazione sbilanciamento e rifasamento linee con carichi monofase

- Uffici, centri direzionali
- Centri commerciali
- Saldatrici monofase

Compensazione tensione (flicker)

- presse, magli, martelli tipo impulsivo
- Seghe a nastro
- Saldatrici
- Forni ad arco

Caratteristiche comuni a tutte le serie di rifasatori ibridi

I compensatori ibridi sono realizzabili su tutte le serie dei prodotti attuali di rifasamento COMAR.

L'installazione è simile a quella dei rifasatori tradizionali con la sola necessità aggiuntiva di portare i segnali amperometrici (CT) di tutte e 3 le fasi.

L'apparecchiatura esce già completamente configurata dalla fabbrica per cui non necessita interventi di settaggio da parte dell'installatore

Si riporta a titolo esemplicativo le configurazioni della serie ibrida AAR/100

DATI TECNICI GENERALI COMUNI A TUTTE LE SERIE

Carpenteria	In lamiera d'acciaio, protetta contro la corrosione mediante fosfatazione e verniciatura a polveri epossidiche. Colore RAL 7035. Grado di protezione: esterno quadro IP 31 interno quadro IP 00 sotto tensione; protezioni IP 20 nei moduli senza interblocco sezionatore. Le batterie di condensatori sono assemblati su cassetti estraibili da fronte quadro per una rapida manutenzione
Installazione	Installazione per interno, in posizione che favorisca la ventilazione ed esente da irraggiamento solare. Ambienti con grado di inquinamento 1 Temperatura di lavoro: -5 / +40 °C Altitudine: <1000 slm
Sezionatore	Tripolare a vuoto con bloccoporta. A richiesta sezionatore Quadripolare (3P+N)
Cablaggio	I collegamenti interni sono realizzati con cavi FS17-450/750V non propaganti fiamma, a bassissima emissione di fumi. Sui capicorda non preisolati il punto di connessione viene ricoperto con guaina termorestringente a lunga durata. I circuiti ausiliari sono opportunamente identificati in ottemperanza alle norme vigenti.
Inserzione batterie	Le batterie sono pilotate da contattori tripolare (Classe AC6-b). Le serie senza induttanza di desintonizzazione montano contattori con resistenza di pre-inserzione per limitare il picco di corrente inrush Le serie a inserzione statica, monta dei moduli di inserzione a tiristori controllati da una logica a microprocessore tale che l'accensione/ spegnimento avvengano quando è nulla la differenza di potenziale tra la rete ed i condensatori. (zero crossing). Il tempo di intervento per l'inserzione delle batterie di condensatori è di circa 200 ms.
Fusibili	Le batterie capacitive sono protette da terne di fusibili ad alto potere d'interruzione (100kA). Il sistema di protezione dei circuiti di potenza utilizza fusibili NH-00 curva qG; per i circuiti ausiliari portafusibili sezionabili e fusibili 10,3x38.
Circuiti ausiliari	230 Vac Trasformatore interno
Tenuta all'impulso	8 kV
Condensatori	Condensatori monofase in polipropilene metallizzato autorigenerabile (MKP), dotati di dispositivo antiscoppio e resistenza di scarica. Impregnati in olio vegetale, esente da PCB. Collegamento a triangolo. Servizio continuativo. • sovratensione: 1,1 x Un (8h / 24h) • sovraccarico di corrente: 1,3 x In • tolleranza sulla capacità: -5% / +10% • perdita per dissipazione: ≤0,4 W/kvar • categoria temperatura: -25 / D
Induttanze di Blocco (dove presenti)	Nucleo in lamierino di ferro a cristalli orientati; avvolgimenti in alluminio Impregnazione in resina Perdita per dissipazione (media): 6W/kvar Sonda di controllo sovratemperatura
SVG	 Configurazione con componenti Mosfest SiC Compensazione in tempo reale di potenza reattiva e sbilanciamento Rendimento 99% Connessione: trifase 3 fili (connessione trifase + neutro su richiesta) Tempo di risposta: 20ms
Regolatore	 Regolatori HPR+HMI 7" interconnessi con misura trifase segnali amperometrici: a mezzo di 3 trasformatori amperometrico con secondario 5A (non inclusi) tempo di risposta: 20ms
Sicurezza	Blocco rifasatore per elevato THDi, THDu, , temperatura >50°C, sotto e sovratensioni. Blocco batteria per sovratemperatura induttanza (dove presente), scarsa capacità Contatto pulito NC per temperatura interna estrema (>70°C)
Collaudo	Il 100% delle apparecchiature sono soggette ad ispezione visiva, test di isolamento fase-fase e fase-terra, efficienza delle batterie e controllo dei circuiti di ventilazione.
Corrispondenza	Condensatori: IEC/EN 60831-1 / 2 certificato da IMQ (V1927)
Norme	Apparecchiature: IEC/EN 61439-1/2, IEC/EN 61921; 2014/35/CE Compatibilità elettromagnetica: 2014/30/CE.

TRADITIONAL SEPARATE DEVICES

HYBRID INTEGRATED
POWER QUALITY SYSTEM

Filtri Armonici Attivi Ibridi

La nuova soluzione integrata per la Power Quality e l'efficienza energetica.

Inonie MtIgation

Il filtraggio Ibrido

Cos'è?

Tradizionalmente, la scarsa qualità dell'alimentazione è stata affrontata attraverso l'impiego di un dispositivo dedicato e mirato a risolvere uno specifico problema.

- Un'unità di rifasamento è utilizzata per correggere un basso valore del fattore di potenza
- Un filtro armonico (attivo o passivo) è utilizzato per mitigarneLe armoniche: causano surriscaldamenti, malfunzionamenti e perdite. gli effetti indesiderati

I progressi nella tecnologia diagnostica hanno portato al riconoscimento del fatto che i problemi di qualità dell'alimentazione derivano dalla combinazione di cause di diversa natura, e che è necessaria una soluzione più flessibile **ibrida**, - che porti alla risoluzione dei problemi tramite **un'unica apparecchiatura**.

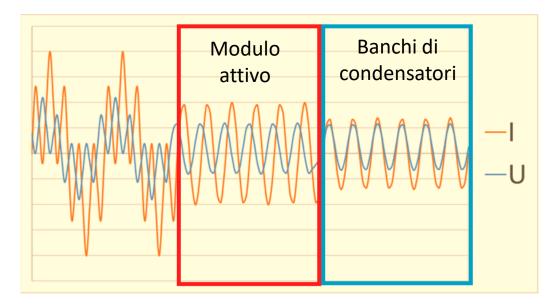
Come funziona?

Il sistema **HAHF** (**Hybrid Active Harmonic Filter**) interviene sulla alimentazione elettrica dei carichi, correggendo selettivamente e in tempo reale le armoniche dal 2° al 50° ordine.

L'ottimizzazione del fattore di potenza è demandato alle tradizionali batterie di condensatori.

L'unità **HAHF** integra tre funzioni all'interno di un unico dispositivo:

- un **modulo attivo** che filtra le armoniche e, con la residua potenza, può regolare con precisione (fine tuning) la potenza reattiva prelevata o immessa,
- banchi di condensatori, gestiti tramite contattori o tiristori, che forniscono la potenza reattiva capacitiva necessaria ai carichi dell'utenza,
- una logica integrata che coordina i due sistemi, assicurando prestazioni ottimali in ogni situazione.

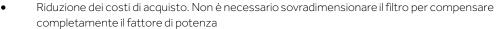

Il risultato è il miglioramento della qualità dell'energia determinata dalla compensazione simultanea e in tempo reale di disturbi armonici, fluttuazioni di tensione, flicker e fattore di potenza,

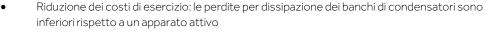
Punti di forza

Flessibilità: gestisce armoniche, potenza reattiva, squilibri di corrente e flicker, in un unico sistema.

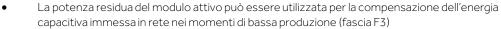
Efficienza: il carico reattivo base è compensato dai gruppi capacitivi, e le variazioni rapide sono gestite in tempo reale e con la massima precisione dal modulo attivo.

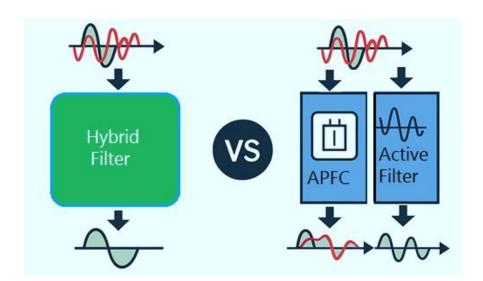
Scalabilità: modulare per adattarsi a diversi scenari di crescita o implementazione dell'impianto.




Vantaggi e impieghi

Benefici





Compattezza: una singola macchina non significa solo meno ingombro ma economicità di installazione: cavi di potenza e segnali amperometrici non devono essere duplicati su più macchine

Il display **H**uman-**M**achine-Interface consente una consultazione intuitiva e semplice.

Dove è necessario?

Industria con carichi altamente variabili e non lineari

impianti con inverter, saldatrici, forni a induzione, robotica, linee di produzione automatizzate.

Vantaggi: il filtro attivo gestisce armoniche e squilibri e regola rapidamente il fattore di potenza, i condensatori alleggeriscono il carico base di potenza reattiva.

Impianti con profili di carico misti e variabili nel tempo

aeroporti, centri commerciali, ospedali, data center.

Vantaggi: la parte attiva compensa dinamicamente i disturbi imprevedibili, i condensatori sono finalizzati alla compensazione dei carichi lentamente variabili.

Industria energivora soggetta a penali da parte del distributore

cementifici, cartiere, acciaierie.

Vantaggi: migliora il cosφ anche in presenza di armoniche e squilibri, evitando sovracorrenti e penali da potenza reattiva.

Sistemi con generazione distribuita o rinnovabili

impianti FV industriali, cogenerazione.

Vantaggi: migliora l'interazione tra carichi e generazione, compensando squilibri e rifasando localmente sia il prelievo che l'immissione di energia reattiva.

Revamping di impianti elettrici esistenti

Vantaggi: sistema compatto e versatile che sostituisce o integra il rifasamento esistente, adattandosi a nuove esigenze di carico.

Sistemi di filtraggio Ibrido

I filtri ibridi HAHF sono disponibili nelle serie filtrate AAR/138, AAR/600, AAR/D20.

L'installazione è simile a quella dei rifasatori tradizionali con la sola necessità aggiuntiva di portare i segnali amperometrici (CT) di due fasi, L1(R) e L3(T).


L'apparecchiatura esce già completamente configurata dalla fabbrica per cui non necessita di interventi di settaggio da parte dell'installatore.

DATI TECNICI GENERALI COMUNI A TUTTE LE SERIE

Carpenteria	In lamiera d'acciaio, protetta contro la corrosione mediante fosfatazione e verniciatura a polveri epossidiche. Colore RAL 7035. Grado di protezione: esterno quadro IP31 interno quadro IP 00 sulle parti sotto tensione; protezioni IP 20 nei moduli senza interblocco sezionatore. Le batterie di condensatori sono assemblati su cassetti estraibili da fronte quadro per una rapida manutenzione.
Installazione	Installazione per interno, in posizione che favorisca la ventilazione ed esente da irraggiamento solare. Ambienti con grado di inquinamento 1. Temperatura di lavoro: -5 / +40 °C. Umidità massima 95%, condensazione non ammessa. Altitudine: <1000 slm.
Sezionatore	Tripolare con bloccoporta.
Cablaggio	I collegamenti interni sono realizzati con cavi FS17-450/750V non propaganti fiamma, a bassissima emissione di fumi. Sui capicorda non preisolati il punto di connessione viene ricoperto con guaina termorestringente a lunga durata. I circuiti ausiliari sono opportunamente identificati in ottemperanza alle norme vigenti.
Inserzione batterie	Le batterie sono pilotate da contattori tripolari (Classe AC6-b).
Fusibili	Le batterie sono protette da terne di fusibili ad alto potere d'interruzione (100kA). Il sistema di protezione dei circuiti di potenza utilizza fusibili NH-00 curva qG; per i circuiti ausiliari portafusibili sezionabili e fusibili 10,3x38.
Circuiti ausiliari	230 Vac Trasformatore interno
Condensatori	Condensatori monofase bi-elemento in polipropilene metallizzato autorigenerabile (MKP), dotati di dispositivo antiscoppio e resistenza di scarica. Impregnati in olio vegetale, esente da PCB. Collegamento a triangolo. Servizio continuativo. • sovratensione: 1,1 x Un (8h / 24h) • sovraccarico di corrente: 1,3 x In • tolleranza sulla capacità: -5% / +10% • perdita per dissipazione: ≤0,4 W/kvar • categoria temperatura: -25 / D
Induttanze di Blocco	Nucleo in lamierino di ferro a cristalli orientati; avvolgimenti in alluminio Impregnazione in resina Perdita per dissipazione (media): 6W/kvar Sonda di controllo sovratemperatura
Filtro attivo AHF	 Commutazione con componenti Mosfest SiC (silicon carbide) ad elevata efficienza. Compensazione in tempo reale di armoniche e potenza reattiva. Rendimento 99% Connessione: trifase 3 fili, Tempo di risposta: 20ms
Regolatore	 Regolatori HPR+HMI 7" interconnessi con misura trifase segnali amperometrici: a mezzo di 2 trasformatori amperometrici con secondario 5A (non inclusi) tempo di risposta programmabile
Sicurezza	Blocco rifasatore per elevato THDi, THDu, , temperatura >50°C, sotto e sovratensioni. Blocco batteria per sovratemperatura induttanza, scarsa capacità Contatto pulito NC per temperatura interna estrema (>70°C)
Collaudo	Il 100% delle apparecchiature sono soggette ad ispezione visiva, test di isolamento fase-fase e fase-terra, efficienza di filtraggio, potenza delle batterie e controllo dei circuiti di ventilazione. I condensatori vengono collaudati per capacità, tangente delta e isolamento in tre momenti consecutivi del processo produttivo.
Corrispondenza Norme	Condensatori: IEC/EN 60831-1/2 certificato da IMQ (V1927) Apparecchiature: IEC/EN 61439-1/2, IEC/EN 61921; 2014/35/CE Compatibilità elettromagnetica: 2014/30/CE.

Gli Static Var Generator fanno parte delle nuove apparecchiature elettroniche di rifasamento in grado di generare energia reattiva capacitiva o induttiva in risposta alle richieste del carico.

Caratteristiche principali sono

- Compensazione delle correnti induttive e capacitive sulle 3 fasi
- Risposta immediata alle variazioni di carico
- Bilanciamento delle correnti tra le 3 fasi

Sono disponibili moduli di diversa potenza che si possono assemblare in parallelo per raggiungere la potenza necessaria

Tensione di funzionamento 228V-456V (a richiesta fino a 690V)

■ **Potenza dei moduli** 30 – 50 – 100 – 200 kvar

Frequenza nominale: 50/60Hz auto selection (45Hz ÷ 62Hz)

Tipologia inverter: Silicon Carbide Mosfet

Efficienza: 99%

Frequenza di commutazione 40kHz (media)

Tempo di risposta: <50us (full compensation <15ms)

Livello compensazione: >97%

Alimentazione Trifase, 3-fili o 4-fili (3 fasi+neutro)

Corrente nominale del neutro 3ln (solo per tipologia a 4 fili)

DATI TECNICI

Correzione del fattore di potenza	compensazione induttiva e capacitiva
Compensazione dello sbilanciamento	compensazione fase per fase di carichi non equilibrati
Protocollo di comunicazione	porta RS485, RJ45; protocollo MODBUS RTU, TCP/IP
Protezioni	sovratensione, sottotensione, sovratemperatura
Rapporto TA	150/5 ÷ 30.000/5 A
Grado di protezione	IP20
Perdite di potenza	≤1%
Montaggio	a parete o in armadio
Temperatura di funzionamento	-20 ÷ 40°C (declassato per temperatura > 40°C).
Umidità relativa	<95% senza formazione condensa
Temperatura di stoccaggio	-20÷70°C
Livello rumore	< 65 dB
Altitudine	≤ 1.500m (dai 1.500m ai 4.000m, 1% di declassamento ogni 100m)

AHF

I filtri attivi di armoniche sono apparecchiature elettroniche in grado di correggere il fattore di potenza e le correnti armoniche. Il principio è simile a quello dei filtri SVG, ma in più possono ridurre le correnti armoniche nella rete iniettando una corrente uguale e contraria a quella armonica. Le caratteristiche principali sono:

- Compensazione della corrente induttiva e capacitiva sulle 3 fasi
- Tempo di risposta immediato alle variazioni di carico
- Bilanciamento della corrente sulle 3 fasi
- Riduzione della corrente armonica

Sono disponibili moduli di diversa potenza che si possono assemblare in parallelo per raggiungere la potenza necessaria

DATI DI PERFORMANCE

Tensione di funzionamento	228 - 456Vac (a richiesta fino a 690V)
Potenza dei moduli	25 – 35 -50 - 60 – 75 - 100 -150 – 300 A
• Frequenza	45Hz÷ 62Hz (auto)
Tipologia inverter:Efficienza:	Silicon Carbide Mosfet 99%
• Frequenza di commutazione	40kHz (media)
Tempo di risposta:Alimentazione	<50us Trifase, 3-fili o 4-fili
Corrente nominale del neutro	3In (solo tipologia a 4 fili)
THDI residuo	< 5% (a pieno carico)

DATITECNICI

Correzione del fattore di potenza	compensazione induttiva e capacitiva
Compensazione dello sbilanciamento	compensazione fase per fase di carichi non equilibrati
Compensazione correnti armoniche	Fino alla 50^ armonica (sia di ordine pari che dispari)
Protocollo di comunicazione	porta RS485, RJ45; protocollo MODBUS RTU, TCP/IP
Protezioni	Tensione/frequenza anomala; Cortocircuito dell'inverter; Corrente di uscita anomala; Sovraccarico dell'inverter; Sovratemperatura
Rapporto TA	150/5 ÷ 30.000/5 A
Grado di protezione	IP20
Perdite di potenza	≤3%
Montaggio	a parete o in armadio
Temperatura di funzionamento	-20 ÷ 40°C (declassato per temperatura > 40°C).
Umidità relativa	<95% senza formazione condensa
Temperatura di stoccaggio	-20÷70°C
Livello rumore	< 65 dB
Altitudine	≤ 1.500m (dai 1.500m ai 4.000m, 1% di declassamento ogni 100m)