POWER FACTOR CORRECTION LOW VOLTAGE

Power Factor Correction

 equipment and Harmonic Filters.
Introduction

\qquad
COMAR Condensatori S.p.A.
Capacitor Characteristics 3
Power Factor 5
Power Factor Correction 6
Why is P.F.C. important? 7
P.F.C. Strategies 8
Sizing of P.F.C. equipment 9
Harmonics and Filtering 10
Choice of P.F.C. equipment 11
Fixed PFC of Transformers 12
Fixed PFC of Three-phase Asynchronous Motors 13
Fixed Power Factor Correction
GS - CS 15
RFIX 17

Automatic Power Factor Correction

GE 230V	21
B15	23
B35	25
B50	27
DMP-FTV	29
utomatic P.F.C. with Detuning Reactors	
AAR/100	
AAR/138	
AAR/600	33
AAR/D20	35

Automatic P.F.C. with Static Insertion

B35-ST 43
AAR/100-ST 45Passive Filters and Passive Modular Three-Phase Filters
FA0549
FAM05 51
FAM05/07 53

Active Modular Filters

SAF-M

COMAR Condensatori S.p.A.

Since 1968 we provide standard products, as well as tailor-made solutions, depending on the needs of the Customer. We are leaders in the production of single-phase and threephase capacitors, power factor correction equipment including those with blocking / detuning inductances, and filters for harmonic reduction.
Installers, design companies and end users find answers to their needs regarding both the correction of the power factor and the reduction of harmonics in electrical networks.

Strengthened by the value that Made in Italy represents, we sell in over 90 countries worldwide, thanks to a sales network that guarantees the availability of COMAR solutions for power factor correction on every continent.

Vision

We firmly believe that the increased electricity demand of the developed and emerging countries must be faced first of all with the reduction of waste.
Power Factor Correction plays a fundamental role in the "intelligent" exploitation of the energy currently produced, in fact it postpones and limits the creation of new power plants, and it contributes to the environment protection, by reducing atmospheric emissions and non-renewable fuel consumption..

Mission

Provide state-of-the-art engineering solutions that, in addition to compliance with quality and safety standards, are also appreciated by Customers for their flexibility, respect of delivery times, ease of installation and maintenance,

Quality \& Certifications

The excellence of COMAR Condensatori products is possible thanks to Italian supply chain, fully under control in our factory located near Bologna. The path to ensure the quality of the methods of design, procurement, production, testing and delivery sees the achievement of the ISO 9001 and ISO 14001 certifications.

The quality of the company system permeates the products, which comply with the requirements of the main international regulations in the sector. All COMAR solutions, contained in this catalog, comply with the European directives for low voltage, concerning the minimum safety requirements and the emission / immunity of electrical devices:

- IEC/EN 60831-1/2 for capacitors, verified by the laboratories © $\operatorname{l|MQ}$
- IEC/EN 61439-1/2 and IEC/EN 61921 for P.F.C. equipment, verified by $>$ DEKRA CESI

All the products made by COMAR Condensatori are labelled with CE marking.

Materials \& Environment

Thanks to constant work with suppliers, we guarantee the compliance of our products with the RoHS and REACH directives. Particular attention is given to the substances published in the SVHC list. We recommend that the out-of-service capacitors are disposed according to the local laws and regulations in force in each country. For EU countries the European Directives 91/156 / EEC, 91/689 / EEC apply and the capacitors disposal shall be in compliance with the European Waste Identification Code (CER 2002).

Capacitor Characteristics

Our strength lies both in the design of the P.F.C solution and in the constructive experience of the main element: the capacitor. In fact, our metallized polypropylene (MKP) capacitors are made of a bi-oriented polypropylene dielectric with low shrinkage and high mechanical properties. The most relevant feature of this type of film is the self-healing of the dielectric that allows the restoration of the electrical functionality:

Delectric Micro short-circuit

Film and surface metallization melting

Isolation of the damaged area

The maximum allowable voltage on the capacitors is reported (CEI EN 60831-1) below:

Type
Overvoltage factor
Maximum duration
Remarks
Industrial frequency*
Industrial frequency*
Industrial frequency* Industrial frequency* Industrial frequency*

Industrial frequency

Value such that the current does not exceed the maximum value of $1.5 \ln$ (overcurrent factor consequence of the combined effects of harmonics, overvoltages and capacity tolerance)

* without harmonics

The technological and methodological measures adopted during the construction guarantee that our capacitor keeps its electrical characteristics stable over time. Below are summarized the key characteristics when temperature changes:

Delta C/C \%

Tang. Delta

All capacitors are equipped with an overpressure safety device which, in the event of an internal short-circuit, disconnects the capacitor isolating it from the electrical network. This system is mechanical, based on the expansion of the metal housing and the consequent breaking of the internal connection wires.

The formation of electric arcs inside is prevented by the presence of insulating oil, of vegetable type, which immediately penetrates the breaking point of
 the wires.

Power Factor

Consider an alternating current circuit, consisting of an electrical power source and a load: the voltage and current waveforms are of a sinusoidal type.
For its operation, the load consumes active energy (kWh), necessary to produce work and reactive energy (kvarh) that does not contribute to the performance of the work, but causes an increase in unwanted consumption.

Most of the loads, in today's electrical distribution systems, are inductive, requiring two types of power:

- Active Power (P_{A}) that performs the work of the machine (eg mechanical, hydraulic, ...) and is measured in kW (kilowatt);
- Reactive Power (P_{R}) which constantly flows towards the load and then returns to the source and is measured in kvar (kilovolt-ampere reactive).

Active Power and Reactive Power constitute the Apparent Power that is measured in kVA (kilovolt ampere). Power Factor $(\cos \boldsymbol{\varphi})$ is simply the ratio between Active Power and Apparent Power:

$$
\cos \varphi=\frac{k W}{k V A}
$$

A high Reactive Power leads to an increase in the problems of managing electrical systems; the main ones include the need to oversize transformers, cables and other elements in the power supply circuit as a result of increased heating and voltage drop. This causes an increase in installation costs.

The solution to these problems is given by the Power Factor Correction: a measure to improve the power factor of a load, in order to reduce the value of the current flowing on the network to the same active power (kW). Re-phasing, therefore, means decreasing the reactive power absorbed by the load that passes through a certain section of the network, until it is canceled at $\cos \boldsymbol{\varphi}=1.00$.

Energy distributor impose a minimum limit to $\cos \varphi$ in order to reduce the circulation of reactive energy along the power lines.

The maximum possible power factor is 1.00, which means that 100\% of the power delivered to the load is the active power converted into useful energy. Any value less than 1.00 indicates that the load supply system must be oversized.

Traditionally, concern for the power factor has been almost exclusively linked to the use of induction motors. Today, however, this is extended to other non-linear loads, such as power electronic devices (e.g. variable speed drives, uninterruptible power supplies), induction furnaces, arc welding machines, ...

Why is P.F.C. important?

Electric capacitors are one of the most cheap and simple sources of energy saving currently known, which allow both the distributor and the company to save money.

Power factor correction determines a rational use of electric power, reducing the undesired effects of load currents such as motors, transformers, etc., and losses due to the joule effect in the cables and devices (switches, transformers) present on the energy transport system.

The additional costs that would be incurred, without P.F.C., are so high that they determine a return on investment of $12 / 18$ months. Indeed, increasing the power factor of electrical systems offers the following advantages:

Reduction of the costs of electric users

The difference between active and apparent power forces the electricity supply company to supercharge the distribution system: the penalties therefore want to incentivize the customer to improve the low power
 factor.

Increased available power

By reducing the kvar demand on the load side and installing the capacitors, the maximum power that can be supplied by the generators and transformers is available.

Improvement of the voltage

The demand for high load kvar increases the voltage drops between the transformers, cables and other system components, with a consequent reduction and flickering of voltage at the equipment.

Reduction of losses due to cable heating

The circuit current is reduced in direct proportion to the increase of the power factor, the I2R loss or the resistive loss in the circuit is inversely proportional to the square of the current.

Distributed power factor correction

The power factor correction equipment is installed close to the individual loads and sized for the required reactive power. Considering that the effect of the capacitors is affected upstream of the installation point, it is the ideal solution to compensate for high inductive currents.

으우 (1) (B)

P.F.C. of groups of loads

Automatic systems, guarantee the P.F.C. of several users, following the request for reactive energy. For high power users, the choice of correcting locally large loads and centrally the remaining power, is usually the most advantageous technicaleconomic solution.

Centralized power factor correction

Installation of a single automatic panel, typically at the transformer or energy delivery point, is the most used and the easiest solution to implement.
It is ideal for small and medium-sized companies and the savings for the user are directed essentially to the elimination of the penalties on the bills.

Sizing of P.F.C. equipment

The reactive power can be balanced by the presence of rephasing using the following equation:

$$
\operatorname{kvarpFC}=\mathrm{kW} \mathrm{Load} \bullet\left(\tan \varphi_{1}-\tan \varphi_{2}\right)=\mathrm{kW} \mathrm{Load} \cdot \mathrm{M}
$$

Knowing that: $\tan \varphi_{1}=$ kvarh $/ \mathrm{kWh}$
M can be calculated using the following table:

	$\tan \varphi 2$	0,62	0,59	0,57	0,54	0,51	0,48	0,46	0,43	0,4	0,36	0,33	0,29	0,25	0,2	0,14	0
	$\cos \varphi 2$	0,85	0,86	0,87	0,88	0,89	0,9	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1
$\tan \varphi 1$	$\cos \varphi 1$																
4,90	0,2	4,28	4,31	4,33	4,36	4,39	4,41	4,44	4,47	4,5	4,54	4,57	4,61	4,65	4,7	4,76	4,9
3,87	0,25	3,25	3,28	3,31	3,33	3,36	3,39	3,42	3,45	3,48	3,51	3,54	3,58	3,62	3,67	3,73	3,87
3,18	0,3	2,56	2,59	2,61	2,64	2,67	2,7	2,72	2,75	2,78	2,82	2,85	2,89	2,93	2,98	3,04	3,18
2,68	0,35	2,06	2,08	2,11	2,14	2,16	2,19	2,22	2,25	2,28	2,31	2,35	2,38	2,43	2,47	2,53	2,68
2,29	0,4	1,67	1,7	1,72	1,75	1,78	1,81	1,84	1,87	1,9	1,93	1,96	2	2,04	2,09	2,15	2,29
1,98	0,45	1,36	1,39	1,42	1,44	1,47	1,5	1,53	1,56	1,59	1,62	1,66	1,69	1,73	1,78	1,84	1,98
1,73	0,5	1,11	1,14	1,17	1,19	1,22	1,25	1,28	1,31	1,34	1,37	1,4	1,44	1,48	1,53	1,59	1,73
1,52	0,55	0,9	0,93	0,95	0,98	1,01	1,03	1,06	1,09	1,12	1,16	1,19	1,23	1,27	1,32	1,38	1,52
1,33	0,6	0,71	0,74	0,77	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1	1,04	1,08	1,13	1,19	1,33
1,23	0,63	0,613	0,639	0,666	0,693	0,72	0,748	0,777	0,807	0,837	0,87	0,904	0,941	0,982	1,03	1,09	1,233
1,17	0,65	0,55	0,58	0,6	0,63	0,66	0,68	0,71	0,74	0,77	0,81	0,84	0,88	0,92	0,97	1,03	1,17
1,14	0,66	0,519	0,545	0,572	0,599	0,626	0,654	0,683	0,712	0,743	0,775	0,81	0,847	0,888	0,935	0,996	1,138
1,11	0,67	0,488	0,515	0,541	0,568	0,596	0,624	0,652	0,682	0,713	0,745	0,779	0,816	0,857	0,905	0,966	1,108
1,08	0,68	0,459	0,485	0,512	0,539	0,566	0,594	0,623	0,652	0,683	0,715	0,75	0,787	0,828	0,875	0,936	1,078
1,05	0,69	0,429	0,456	0,482	0,509	0,537	0,565	0,593	0,623	0,654	0,686	0,72	0,757	0,798	0,846	0,907	1,049
1,02	0,7	0,4	0,43	0,45	0,48	0,51	0,54	0,56	0,59	0,62	0,66	0,69	0,73	0,77	0,82	0,88	1,02
0,99	0,71	0,37	0,4	0,43	0,45	0,48	0,51	0,54	0,57	0.6	0,63	0,66	0,7	0,74	0,79	0,85	0,99
0,96	0,72	0,34	0,37	0,4	0,42	0,45	0,48	0,51	0,54	0,57	0,6	0,64	0,67	0,71	0,76	0,82	0,96
0,94	0,73	0,32	0,34	0,37	0,4	0,42	0,45	0,48	0,51	0,54	0,57	0,61	0,64	0,69	0,73	0,79	0,94
0,91	0,74	0,29	0,32	0,34	0,37	0,4	0,42	0,45	0,48	0,51	0,55	0,58	0,62	0,66	0,71	0,77	0,91
0,88	0,75	0,26	0,29	0,32	0,34	0,37	0,4	0,43	0,46	0,49	0,52	0,55	0,59	0,63	0,68	0,74	0,88
0,86	0,76	0,24	0,26	0,29	0,32	0,34	0,37	0,4	0,43	0,46	0,49	0,53	0,56	0,6	0,65	0,71	0,86
0,83	0,77	0,21	0,24	0,26	0,29	0,32	0,34	0,37	0,4	0,43	0,47	0,5	0,54	0,58	0,63	0,69	0,83
0,80	0,78	0,18	0,21	0,24	0,26	0,29	0,32	0,35	0,38	0,41	0,44	0,47	0,51	0,55	0,6	0,66	0,8
0,78	0,79	0,16	0,18	0,21	0,24	0,26	0,29	0,32	0,35	0,38	0,41	0,45	0,48	0,53	0,57	0,63	0,78
0,75	0,8	0,13	0,16	0,18	0,21	0,24	0,27	0,29	0,32	0,35	0,39	0,42	0,46	0,5	0,55	0,61	0,75
0,72	0,81	0.1	0,13	0,16	0,18	0,21	0,24	0,27	0,3	0,33	0,36	0,4	0,43	0,47	0,52	0,58	0,72
0,70	0,82	0,08	0,1	0,13	0,16	0,19	0,21	0,24	0,27	0,3	0,34	0,37	0,41	0,45	0,49	0,56	0,7
0,67	0,83	0,05	0,08	0,11	0,13	0,16	0,19	0,22	0,25	0,28	0,31	0,34	0,38	0,42	0,47	0,53	0,67
0,65	0,84	0,03	0,05	0,08	0,11	0,13	0,16	0,19	0,22	0,25	0,28	0,32	0,35	0,4	0,44	0,5	0,65
0,62	0,85		0,03	0,05	0,08	0,11	0,14	0,16	0,19	0,22	0,26	0,29	0,33	0,37	0,42	0,48	0,62
0,59	0,86			0,03	0,05	0,08	0,11	0,14	0,17	0,2	0,23	0,26	0,3	0,34	0,39	0,45	0,59
0,57	0,87				0,03	0,05	0,08	0,11	0,14	0,17	0,2	0,24	0,28	0,32	0,36	0,42	0,57
0,54	0,88					0,03	0,06	0,08	0,11	0,14	0,18	0,21	0,25	0,29	0,34	0,4	0,54
0,51	0,89						0,03	0,06	0,09	0,12	0,15	0,18	0,22	0,26	0,31	0,37	0,51
0,48	0,9							0,03	0,06	0,09	0,12	0,16	0,19	0,23	0,28	0,34	0,48
0,46	0,91								0,03	0,06	0,09	0,13	0,16	0,2	0,25	0,31	0,46
0,43	0,92									0,03	0,06	0,1	0,13	0,18	0,22	0,28	0,43
0,40	0,93										0,03	0,07	0,1	0,14	0,19	0,25	0,4
0,36	0,94											0,03	0,07	0,11	0,16	0,22	0,36

Example:

$\operatorname{Cos} \varphi_{1}=0,71$, original power factor (before correction)
$\operatorname{Cos} \varphi_{2}=0,97$, target power factor (after correction)
M $=0,74$
Therefore, given a load of 1000 kW , it will be necessary to use a power factor correction of 740 kvar .

The presence of non-sinusoidal currents in industrial plants produces undesired phenomena and in some situations real operating anomalies, that grow when the intensity of the harmonic components is higher..

To quantify the presence of all the harmonics, the THD (Total Harmonic Distorsion) factor has been introduced:

$$
\mathrm{THD} \%=100 \times \sqrt{\sum_{n=2}^{N}\left(\frac{A n}{A_{1}}\right)^{2}}
$$

$\mathrm{A}_{\mathbf{1}}=$ amplitude of the	An= amplitude of the	$\mathrm{N}=$ higher degree of
fundamental	harmonic of order n	harmonic order

In order to carry out power factor correction when high harmonic currents are present, it is necessary to choose equipment with blocking reactors (detuned inductances) that are arranged in series with the capacitors, so as to compose an LC branch that has a tuning frequency at a lower value than the lowest harmonic. Typically it is equal to:

- $189 \mathrm{~Hz}(7 \%)$ when the lowest is the 5 th harmonic
- 138 Hz (14\%) when the lowest is the 3rd harmonic

In industrial plants, where the loads power can be very high, any harmonic component may not be acceptable: therefore, a real action of reducing, if not eliminating, the harmonics is required.

For this purpose passive filters are the traditional means of resolution. This equipment consists of several LC branches in each of which the resonant frequency coincides with one of the undesired harmonic frequencies.

The system thus composed constitutes a preferential path through which the harmonic currents find a way to close again and do not affect the upstream network.

Appropriate design is needed to avoid resonance phenomena.
Further information on harmonics can be found in the "Technical Information" on our website www.comarcond.com.

Choice of P.F.C. equipment

We offer a wide range of power factor correction systems, depending on the harmonic content in the network. We always recommend, to carry out the necessary measurements on the electricity grid, in order to estimate the harmonic distortion rate (THDI).

$\mathrm{Sn}=$ Apparent power of the transformer (kVA)
$\mathrm{Qn}=$ Power of the power factor correction equipment (kvar)
Gh = Power of distorting loads (kW)
THD (I) = Maximum rate of harmonic distortion in current allowed on the network
THD(U) = Maximum rate of harmonic distortion in voltage allowed on the network

All automatic P.F.C. equipment, with or without blocking reactors, can be realized with static insertion, for an immediate response to load variations. The catalog contains, by way of example, the series B35 and AAR / 100.

Fixed PFC of Transformers

The transformers for the distribution of electrical energy can be made in two different types: oil transformers, whose cooling does not require special aids and transformers insulated in resin, forced or natural cooled.

It is always advisable to provide for a fixed power factor correction of the MV / LV transformers, since even if they operate without load (for example during the night), they absorb reactive power that must be compensated.

The calculation of the necessary capacitive power can be performed using the approximate formula:

$$
Q=I_{0} \% * \frac{P n}{100}
$$

lo = no-load current (supplied by the transformer manufacturer)
$\mathrm{Pn}=$ rated power of the transformer

Alternatively, if the requested data is not available, the following table can be used, differentiated by type of transformer with normal loss characteristics.

REACTIVE POWER* required for (NO LOAD) POWER FACTOR CORRECTION of MV / LVTRASFORMERS (kvar)

Transformer power (kVA)	Transformers in OIL	Transformers in RESIN
100	5	2,5
160	7,5	5
200	7,5	5
250	7,5	7,5
315	10	7,5
400	10	7,5
500	12,5	7,5
630	15	10
800	17,5	10
1000	22,5	12,5
1250	25	15
1600	30	20
2000	35	22,5
2500	45	30
3150	55	45

[^0]
Fixed PFC of Three-phase Asynchronous Motors

One of the most common loads is the three-phase asynchronous motor, which can be rephased locally, with the advantage of having the power cable run through by a lower current.

The capacitance of the capacitors must not exceed the reactive power at no load of the motor due to the risk of self-excitation and resonance phenomena between the capacitor and the inductance of the machine. The following table shows the power factor correction power in the case of a cage motor. For motors with wound rotor, an increase of 5% is recommended.

Rated motor power		$\begin{gathered} \hline 2 \text { poles } \\ \hline 3000 \mathrm{rpm} \end{gathered}$		$\begin{gathered} 4 \text { poles } \\ 1500 \mathrm{rpm} \end{gathered}$		$\begin{gathered} 6 \text { poles } \\ 1000 \mathrm{rpm} \end{gathered}$		8 poles 750 rpm	
HP	kW	no load	load	no load	load	noload	load	noload	load
1	0,74	0,5	0,6	0,5	0,7	0,6	0,8	0,75	1
2	1,5	0,8	1	1	1,2	1,1	1,4	1	1,5
3	2,2	1,1	1,4	1,2	1,5	1,4	1,8	1,5	2
5.5	4.1	1,7	2,2	1,9	2,5	2,1	2,8	2,5	3,5
7,5	5,5	2,3	3	2,5	3,4	2,8	3,7	3	4,5
10	7.4	3	4,4	3,6	4,6	4,1	5,4	4,5	6
15	11	4	6,5	5,5	7,2	6	8	7	9
30	22	10	12,5	11	13,5	12	15	12,5	16
50	37	17,5	24	20	27	22	30	17,5	27,5
100	74	28	45	32	49	37	54	35	55
150	110	40	64	46	70	52	76	55	80
200	150	50	81	58	89	65	95	70	105
250	180	60	98	72	105	82	115	90	130
350	257	70	113	80	130	90	146	125	185

GS - CS • RFIX
Fixed Power Factor Correction

GS - CS

Fixed Power Factor Correction equipment

QUALITY AND TESTING

Regulations
IEC/EN 60831-1 / 2, IEC/EN 61921

TECHNICAL DATA

Supply	Three-phase + earth.
Degree of protection	IP 30.

Installation	Vertical. GS series : cabinet for wall mounting. CS series: cabinet for floor mounting.
Indoor installation, in a well ventilated position away from heat sources.	

Ventilation GS series : natural. CS series: forced.
Dielectric losses $\quad \leq 0,2 \mathrm{~W} /$ kvar.
Fuses T version only. Each capacitors bank is protected by fuses. The protection system of both the power circuits (NH-00 curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100 kA).
Capacitors Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service.

- overvoltage: $1.1 \times \mathrm{A}$ (8h/24h)
- current overload: $1.3 \times \mathrm{In}$
- capacity tolerance: $-5 \% /+10 \%$
- losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$
-temperature category: -25 / D

CONSTRUCTION CHARACTERISTICS

GSG; CS; GS4
GSG-T;CS-T;GS4-T
GSG-M; CS-M;GS4-M
fixed bank, without any protection device.
single capacitor bank with disconnector and protection device (fuses), suitable for power factor correction.
single capacitor bank with disconnector, protection device (fuses) and remote control switch with 230 V auxiliary coil (standard). This solution requires the power supply of the remote control switch coil by the installer.

CONFIGURATION

Generalnotes

- The cable entry is always side up;
- The dimensions of the GS4 series are 435 (b) $\times 326$ (d) $\times 806$ (h) mm, as per the G4E cabinet shown in the mechanical drawings;
- The "T" indicates the presence of fuses;
- The " M " indicates the presence of fuses and contactor, a configuration particularly suitable for motor applications

Table

Code	Tiype	50 Hz			60 Hz			Capacitance μF	Weight \qquad kg .	THDIMax. (\%)	THDIcMax. (\%)	Protection device
		Qn	Un	In	Qn	Un	In					
		kvar	V	A	kvar	V	A					
8951412125325	GSG-B15	12,5	415	17	12,5	380	19	3×77	13	15	50	-
8951412250325	GSG-B15	25	415	35	25	380	38	3×154	16	15	50	-
8951412375325	GSG-B15	37,5	415	52	37,5	380	57	3×231	19	15	50	-
8951412500325	GSG-B15	50	415	70	50	380	76	3×308	21	15	50	-
8951412625325	GSG-B15	62,5	415	87	62,5	380	95	3×385	26	15	50	-
8951412750325	GS4-B15	75	415	104	75	380	114	3×462	38	15	50	-
8951413100325	GS4-B15	100	415	139	100	380	152	3×616	43	15	50	-
8971412125355	GSG-B50	12,5	415	17	12,5	380	19	3×77	15	35	80	-
8971412250355	GSG-B50	25	415	35	25	380	38	3×154	18	35	80	-
8971412375355	GSG-B50	37.5	415	52	37,5	380	57	3×231	21	35	80	-
8971412500355	GSG-B50	50	415	70	50	380	76	3×308	23	35	80	-
8971412625355	GSG-B50	62,5	415	87	62,5	380	95	3×385	28	35	80	-
8971412750355	GS4-B50	75	415	104	75	380	114	3×462	40	35	80	-
8971413100355	GS4-B50	100	415	139	100	380	152	3×616	41	35	80	-
8951413012325	GSG-B15 T	12,5	415	17	12,5	380	19	3×77	16	15	50	Sez+Fus 25A
8951413025325	GSG-B15 T	25	415	35	25	380	38	3×154	19	15	50	Sez+Fus 50A
8951413037325	GSG-B15 T	37.5	415	52	37.5	380	57	3×231	22	15	50	Sez+Fus 80A
8951413050325	GSG-B15 T	50	415	70	50	380	76	3×308	24	15	50	Sez+Fus 100A
8951413062325	GSG-B15 T	62,5	415	87	62,5	380	95	3×385	29	15	50	Sez+Fus 125A
8951413075325	GS4-B15 T	75	415	104	75	380	114	3×462	41	15	50	Sez+Fus 160A
8951414010325	GS4-B15 T	100	415	139	100	380	152	3×616	42	15	50	Sez+Fus 2x100A
8971413012355	GSG-B50 T	12,5	415	17	12,5	380	19	3×77	18	35	80	Sez+Fus 25A
8971413025355	GSG-B50 T	25	415	35	25	380	38	3×154	23	35	80	Sez+Fus 50A
8971413037355	GSG-B50 T	37.5	415	52	37,5	380	57	3×231	25	35	80	Sez+Fus 80A
8971413050355	GSG-B50 T	50	415	70	50	380	76	3×308	28	35	80	Sez+Fus 100A
8971413062355	GSG-B50 T	62,5	415	87	62,5	380	95	3×385	35	35	80	Sez+Fus 125A
8971413075355	GS4-B50 T	75	415	104	75	380	114	3×462	47	35	80	Sez+Fus 160A
8971414010355	GS4-B50 T	100	415	139	100	380	152	3×616	48	35	80	Sez+Fus 2x100A
8971412125505	GSG-B50 M	12,5	415	17	12,5	380	20	3×77	18	35	80	Sez+Fus 25A
8971412250505	GSG-B50 M	25	415	35	25	380	39	3×154	23	35	80	Sez+Fus 50A
8971412375505	GSG-B50 M	37,5	415	52	37,5	380	58	3×231	25	35	80	Sez+Fus 80A
8971412500505	GSG-B50 M	50	415	70	50	380	77	3×308	28	35	80	Sez+Fus 100A
8971412625505	GSG-B50 M	62,5	415	87	62,5	380	96	3×385	35	35	80	Sez+Fus 125A
8971412750505	GS4-B50 M	75	415	104	75	380	115	3×462	47	35	80	Sez+Fus 160A

CS series with blocking reactors:

-the dissipation losses of the inductances are $6 \mathrm{~W} / \mathrm{kvar}(\mathrm{AVG}$);
-the max. harmonic distortion of voltage allowed in the networks is: THDU $=3 \%(189 \mathrm{~Hz})$. Others available on request.

Code	Tiype	50 Hz			60 Hz			Capacitance F	Weight$\mathrm{kg} .$	THDIMax. (\%)	THDIcMax. (\%)	Protection device
		Qn	Un	In	Qn	Un	In					
		kvar	V	A	kvar	V	A					
8981402125705	CS-AAR/100	12,5	400	18	13,5	380	21	3×77	32	100	3\%	-
8981402250700	CS-AAR/100	25	400	36	27	380	41	3×154	41	100	3\%	-
8981402500700	CS-AAR/100	50	400	72	54	380	76	3×308	59	100	3\%	-
8981403012705	CS-AAR/100 T	12,5	400	18	13,5	380	21	3×77	35	100	3\%	Sez+Fus 25A
8981403025705	CS-AAR/100 T	25	400	36	27	380	41	3×154	44	100	3\%	Sez+Fus 50A
8981403050705	CS-AAR/100 T	50	400	72	54	380	76	3×308	62	100	3\%	Sez+Fus 100A
8981402125675	CS-AAR/100M	12,5	400	18	13,5	380	21	3×77	36	100	3\%	Sez+Fus 25A
8981402250675	CS-AAR/100 M	25	400	36	27	380	41	3×154	45	100	3\%	Sez+Fus 50A
8981402500675	CS-AAR/100 M	50	400	72	54	380	76	3×308	63	100	3\%	Sez+Fus 100A

The RFIX series is the new solution developed for fixed power factor correction. The compact design makes it easy to locate and install. A second version equipped with a protection device is also available.

PERFORMANCE DATA

- Ratedvoltage

415 Vac (others on request)
450 Vac for RFIX-B15 series; 550 Vac for RFIX-B50 series

50 Hz (60 Hz on request)
690 Vac
1,1 Un (rated voltage)
$-5 \% /+10 \%$
75 V residual within 3 minutes (included)

QUALITY AND TESTING

Regulations
IEC/EN 60831-1 / 2, IEC/EN 61921

TECHNICAL DATA

Supply
Three-phase + earth.
Degree of protection IP 30.

Installation	Vertical, for wall mounting. Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Natural.
Dielectric losses	$\leq 0,2 \mathrm{~W} / \mathrm{kvar}$.
Fuses	T version only. Each capacitors bank is protected by fuses. The protection system of power circuits (NH-00 curve gG fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - overvoltage: $1.1 \times \mathrm{A}$ (8h / 24h) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: $-5 \% /+10 \%$ - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ -temperature category: -25 / D

CONSTRUCTION CHARACTERISTICS

RFIX	fixed bank, without any protection device.
RFIX-T	fixed bank, equipped with protection device (isolating switch + fuses).

Fixed dimensions:
$A=170 \mathrm{~mm}$
$B=400 \mathrm{~mm}$
$H=250 \mathrm{~mm}$

CONFIGURATION

General notes

- The cable entry is always at the top.

Table

Code	Type	50 Hz			Capacitance μF	Weight kg .	THDIMax. (\%)	THDlc Max. (\%)
		Qn	Un	In				
		kvar	V	A				
8951412034335	RFIX-B15	3,4	415	4.7	3×21	6	15	50
8951412062335	RFIX-B15	6,25	415	8.7	$3 \times 38,5$	6.3	15	50
8951412125335	RFIX-B15	12,5	415	17.4	3×77	6.5	15	50
8951412175335	RFIX-B15	17.5	415	24.3	3×105	7	15	50
8951412250335	RFIX-B15	25	415	34,8	3×154	9.5	15	50
8951412340335	RFIX-B15	34	415	48	3×210	10,5	15	50
8951412034350	RFIX-B50	3.4	415	4.7	3×21	6	35	80
8951412062350	RFIX-B50	6,25	415	8.7	$3 \times 38,5$	6.3	35	80
8951412125350	RFIX-B50	12,5	415	17.4	3×77	6,5	35	80
8951412175350	RFIX-B50	17.5	415	24.3	3×105	7	35	80
8951412250350	RFIX-B50	25	415	34,8	3×154	9,5	35	80

Solution with isolator switch and fuses

Code	Type	50 Hz			Capacitance μF	Weight kg.	THDIMax. (\%)	THDIcMax. (\%)
		Qn	Un	In				
		kvar	V	A				
8951412034355	RFIX-T-B15	3.4	415	4.7	3×21	6	15	50
8951412062355	RFIX-T-B15	6,25	415	8.7	$3 \times 38,5$	6,3	15	50
8951412125355	RFIX-T-B15	12,5	415	17.4	3×77	6,5	15	50
8951412175355	RFIX-T-B15	17.5	415	24,3	3×105	7	15	50
8951412250355	RFIX-T-B15	25	415	34,8	3×154	9,5	15	50
8951412340355	RFIX-T-B15	34	415	48	3×210	10,5	15	50
8951412034375	RFIX-T-B50	3.4	415	4.7	3×21	6	35	80
8951412062375	RFIX-T-B50	6,25	415	8,7	$3 \times 38,5$	6,3	35	80
8951412125375	RFIX-T-B50	12,5	415	17,4	3×77	6,5	35	80
8951412175375	RFIX-T-B50	17.5	415	24,3	3×105	7	35	80
8951412250375	RFIX-T-B50	25	415	34,8	3×154	9.5	35	80

Discover our Academy and learn how to collect the network measures to size the Power Factor Correction equipment correctly

GE 230V •B15 • B35 • B50 • DMP-FTV

Automatic

Power Factor Correction

GE 230V

Automatic Power Factor Correction equipment

GE 230 V series is particularly suitable for three-phase networks with low harmonic distortion in current. These equipment guarantee an accurate power factor correction, thanks to a multistep design that effectively divides the power. In addition, on the G6E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- Auxiliaryvoltage
- Overvoltage
- Temperaturerange
- Impulse withstand

230 Vac (others on request)
50 Hz (60 Hz on request)
690 Vac
230 Vac (110 Vac on request)
1,1 Un (rated voltage)
$-5 /+40^{\circ} \mathrm{C}$
6 kV (G3E, G4E);
8 kV (G4RM, G6E)

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31, with the exception of type G3E and G4E with IP30 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Natural for powers up to 95 kvar; Forced for powers over 95 kvar.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability. The limitation of current peaks caused by the insertion of the capacitive batteries is guaranteed by pre-charging resistors.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits ($\mathrm{NH}-00$ curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 415 Vac (maximum voltage 450 Vac$)$ - overvoltage: $1.1 \times \mathrm{A}$ (8h / 24h) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: $-5 \% /+10 \%$ - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ -temperature category: -25 / D

Controller • type of measurement: varmetric.

- amperometric signal: by means of an amperometric transformer with secondary 5A, class $1-5 \mathrm{VA}$ (by the user)
- amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series
- standard capacitors on / offtimes: 60" (others on request)

QUALITY AND TESTING

[^1]
CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- \quad The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \swarrow side up, \downarrow from the top
- The rated power is expressed at $230 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)
On request, the CCS remote monitoring system can be integrated to display the data in real time. For any specific information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond.com or directly upon request.

Other solutions are available on request.

B15 series equipment are particularly suitable for three-phase networks with operating voltage equal to $\mathbf{4 0 0} \mathbf{~ V a c ~ (+ / - 1 0 \%) ~ w i t h ~}$ low harmonic distortion in current. These equipment guarantee an accurate P.F.C., thanks to a multi-step design that effectively divides the power. In addition, on the G6E and G8E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- Auxiliary voltage
-

Overvoltage
-
Temperature range
Impulse withstand

415 Vac (others on request)
50 Hz (60 Hz on request)
690 Vac

400 Vac forG3E, G4E, G4RM 230 Vac for G6E, G8E

1,1 Un (rated voltage)
$-5 /+40^{\circ} \mathrm{C}$

6 kV (G3E, G4E); 8 kV (G4RM, G6E, G8E)

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31, with the exception of type G3E and G4E with IP30 (others on request); internal paneI IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Natural for powers up to 200 kvar ; Forced for powers over 200 kvar .
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750 V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability. The limitation of current peaks caused by the insertion of the capacitive batteries is guaranteed by pre-charging resistors.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits ($\mathrm{NH}-00$ curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 415 Vac (maximum voltage 450 Vac$)$ - overvoltage: $1.1 \times \mathrm{A}$ (8h / 24h) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: -5% / + 10\% - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D

Controller • type of measurement: varmetric.

- amperometric signal: by means of an amperometric transformer with secondary 5 A , class $1-5 \mathrm{VA}$ (by the user)
- amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series
- standard capacitors on / off times: 60" (others on request)

QUALITY AND TESTING

Regulations
Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives
Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.
Testing
100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \measuredangle side up, \downarrow from the top
- The rated power is expressed at $415 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)
On request, the CCS remote monitoring system can be integrated to display the data in real time. For any specific information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond.com or directly upon request.

Table

> THD(I)max. = 15\%

THD(Ic)max. $=50 \%$

Code	Type	Qn (kvar)	Cable entry	In (A)				Bank (kv	ssize var)				Steps (n)	Switch isolator (A)	Controller (type)	Weight (kg)
8631412102320	G3E	10,2	\checkmark	14	3.4	3.4	3.4						3	40	BMR4	14
8631412159320	G3E	15,9	\checkmark	22	3.4	6,25	6,25						5	40	BMR4	15
8631412221320	G3E	22,15	\checkmark	31	3,4	6,25	12,5						7	80	BMR4	16
8631412310320	G3E	31.25	\checkmark	43	6,25	12,5	12,5						5	80	BMR4	18
8631412435320	G3E	43.75	\checkmark	61	6,25	12,5	25						7	125	BMR4	22
8631412500320	G3E	50	\checkmark	70	12.5	12,5	25						4	125	BMR4	23
8631412625320	G3E	62,5	\checkmark	87	12.5	25	25						5	125	BMR4	26
8631412750320	G4E	75	\checkmark	104	12,5	12,5	25	25					6	200	BMR4	38
8631413100400	G4E	100	\checkmark	139	12,5	12,5	25	50					8	200	BMR4	43
8631413136400	G4E	136	\checkmark	190	17	17	34	68					8	315	BMR4	55
8661413150325	G4RM	150	\checkmark	209	25	25	50	50					6	315	BMR4	85
8661413175325	G4RM	175	\checkmark	243	25	50	50	50					7	400	BMR4	87
8661413200325	G4RM	200	\checkmark	278	25	25	50	100					8	400	BMR4	89
8661413225325	G4RM	225	\checkmark	313	25	50	50	100					9	500	BMR4	95
8661413250325	G4RM	250	\checkmark	348	25	50	75	100					10	500	BMR4	102
8661413289400	G4RM	289	\swarrow	402	17	17	34	34	68	68	68		17	630	BMR4	102
8661413300325	G6E	300	\downarrow	417	25	50	75	75	75				12	630	HPR6	175
8661413350325	G6E	350	\downarrow	487	50	75	75	75	75				9	800	HPR6	192
8661413400325	G6E	400	\downarrow	556	50	50	75	75	75	75			14	800	HPR6	207
8661413450325	G6E	450	\downarrow	626	50	50	50	75	75	150			16	1000	HPR6	240
8661413500325	G6E	500	\downarrow	696	50	75	75	75	75	150			13	1000	HPR6	255
8631413525420	G8E	525	\uparrow	731	75	75	75	75	75	75	75		7	1250	HPR12	315
8631413600420	G8E	600	\uparrow	836	75	75	75	75	75	75	75	75	8	1250	HPR12	330
8631413675420	G8E	675	\uparrow	940	75	75	75	75	75	75	75	150	9	1600	HPR12	350
8631413750420	G8E	750	\uparrow	1045	75	75	75	75	75	75	150	150	10	1600	HPR12	380
8631413825420	G8E (II)	825	\uparrow	1149	75	75	75	75	75	150	150	150	11	$800+1000$	HPR12	510
8631413900420	G8E (II)	900	\uparrow	1254	75	75	75	75	150	150	150	150	12	$1000+1000$	HPR12	530
8631413975420	G8E (II)	975	\uparrow	1358	75	75	75	150	150	150	150	150	13	$1000+1250$	HPR12	550
8631414105420	G8E (II)	1050	\uparrow	1462	75	75	150	150	150	150	150	150	14	$1000+1250$	HPR12	650
8631414120420	G8E (II)	1200	\uparrow	1671	75	75	150	150	150	150	150	300	16	$1250+1250$	HPR12	690
8631414135420	G8E (II)	1350	\uparrow	1880	75	75	150	150	150	150	300	300	18	$1600+1250$	HPR12	730

Automatic Power Factor Correction equipment

B35 series equipment are particularly suitable for three-phase networks with operating voltage equal to $\mathbf{4 0 0} \mathbf{~ V a c ~ (+ / - 1 0 \%) ~ w i t h ~}$ low-medium harmonic distortion in current. These equipment guarantee an accurate P.F.C., thanks to a multi-step design that effectively divides the power. In addition, on the G6E and G8E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- Auxiliaryvoltage
-

Overvoltage
Temperature range
Impulse withstand

415 Vac (others on request)
$50 \mathrm{~Hz}(60 \mathrm{~Hz}$ on request)
690 Vac

400 Vac forG3E, G4E, G4RM 230 Vac for G6E, G8E

1,1 Un (rated voltage)
$-5 /+40^{\circ} \mathrm{C}$

6 kV (G3E, G4E); 8 kV (G4RM, G6E, G8E)

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31, with the exception of type G3E and G4E with IP30 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Natural for powers up to 200 kvar ; Forced for powers over 200 kvar.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability. The limitation of current peaks caused by the insertion of the capacitive batteries is guaranteed by pre-charging resistors.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits (NH-00 curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 440 Vac (maximum voltage 500 Vac) - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: -5\% / + 10\% - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category:-25 / D

Controller • type of measurement: varmetric.

- amperometric signal: by means of an amperometric transformer with secondary 5 A , class $1-5 \mathrm{VA}$ (by the user)
- amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series
- standard capacitors on / off times: 60" (others on request)

QUALITY AND TESTING

Regulations
Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives
Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.
Testing

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- \quad The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \swarrow side up, \downarrow from the top
- The rated power is expressed at $415 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)
On request, the CCS remote monitoring system can be integrated to display the data in real time. For any specific information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond.com or directly upon request.

Table

THD (I)max. $=25 \% \quad$ THD (IC) max. $=70 \%$

Code	Type	Qn (kvar)	Cable entry	In (A)				Bank	ssize				Steps (n)	Switch isolator	Controller (type)	Weight (kg)
8671412102340	G3E	10.2	\checkmark	14	3.4	3.4	3,4						3	40	BMR4	14
8671412159340	G3E	15.9	\checkmark	22	3,4	6.25	6.25						5	40	BMR4	15
8671412221340	G3E	22,15	\checkmark	31	3.4	6.25	12.5						7	80	BMR4	16
8671412310340	G3E	31,25	\downarrow	43	6,25	12.5	12.5						5	80	BMR4	18
8671412435340	G3E	43,75	\downarrow	61	6.25	12.5	25						7	125	BMR4	22
8671412500340	G3E	50	\checkmark	70	12.5	12.5	25						4	125	BMR4	23
8671412625340	G3E	62.5	\checkmark	87	12.5	25	25						5	125	BMR4	26
8671412750340	G4E	75	\checkmark	104	12.5	12.5	25	25					6	200	BMR4	38
8671413100340	G4E	100	\checkmark	139	12.5	12.5	25	50					8	200	BMR4	43
8671413125345	G4RM	125	\checkmark	174	25	50	50						5	250	BMR4	80
8671413150345	G4RM	150	\checkmark	209	25	25	50	50					6	315	BMR4	85
8671413175345	G4RM	175	\checkmark	243	25	50	50	50					7	400	BMR4	87
8671413200345	G4RM	200	\checkmark	278	25	25	50	100					8	400	BMR4	89
8671413225345	G4RM	225	\downarrow	313	25	50	50	100					9	500	BMR4	95
8671413250345	G4RM	250	\checkmark	348	25	50	75	100					10	500	BMR4	102
8671413300355	G6E	300	\downarrow	417	25	50	75	75	75				12	630	HPR6	175
8671413350355	G6E	350	\downarrow	487	50	75	75	75	75				9	800	HPR6	192
8671413400355	G6E	400	\downarrow	556	50	50	75	75	75	75			14	800	HPR6	207
8671413450355	G6E	450	\downarrow	626	50	50	50	75	75	150			16	1000	HPR6	240
8671413500355	G6E	500	\downarrow	696	50	75	75	75	75	150			13	1000	HPR6	255
8671413525440	G8E	525	\uparrow	731	75	75	75	75	75	75	75		7	1250	HPR12	315
8671413600440	G8E	600	\uparrow	836	75	75	75	75	75	75	75	75	8	1250	HPR12	330
8671413675440	G8E	675	\uparrow	940	75	75	75	75	75	75	75	150	9	1600	HPR12	350
8671413750440	G8E	750	\uparrow	1045	75	75	75	75	75	75	150	150	10	1600	HPR12	380
8671413825440	G8E (II)	825	\uparrow	1149	75	75	75	75	75	150	150	150	11	800+1000	HPR12	510
8671413900440	G8E (II)	900	\uparrow	1254	75	75	75	75	150	150	150	150	12	1000+1000	HPR12	530
8671413975440	G8E (II)	975	\uparrow	1358	75	75	75	150	150	150	150	150	13	$1000+1250$	HPR12	550
8671414105440	G8E (II)	1050	\uparrow	1462	75	75	150	150	150	150	150	150	14	$1000+1250$	HPR12	650
8671414120440	G8E (II)	1200	\uparrow	1671	75	75	150	150	150	150	150	300	16	$1250+1250$	HPR12	690
8671414135440	G8E (II)	1350	\uparrow	1880	75	75	150	150	150	150	300	300	18	$1600+1250$	HPR12	730

B50 series equipment are particularly suitable for three-phase networks with operating voltage equal to $\mathbf{4 0 0} \mathbf{~ V a c ~ (+ / - 1 0 \%) ~ w i t h ~}$ medium harmonic distortion in current. These equipment guarantee an accurate P.F.C., thanks to a multi-step design that effectively divides the power. In addition, on the G6E and G8E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- Auxiliaryvoltage
-

Overvoltage
-
Temperature range
Impulse withstand

415 Vac (others on request)
50 Hz (60 Hz on request)
690 Vac

400 Vac forG3E, G4E, G4RM 230 Vac for G6E, G8E

1,1 Un (rated voltage)
$-5 /+40^{\circ} \mathrm{C}$

6 kV (G3E, G4E); 8 kV (G4RM, G6E, G8E)

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31, with the exception of type G3E and G4E with IP30 (others on request); internal paneI IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Natural for powers up to 200 kvar; Forced for powers over 200 kvar.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability. The limitation of current peaks caused by the insertion of the capacitive batteries is guaranteed by pre-charging resistors.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits ($\mathrm{NH}-00$ curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100 kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 500 Vac (maximum voltage 550 Vac) - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: $-5 \% /+10 \%$ - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D

Controller • type of measurement: varmetric.

- amperometric signal: by means of an amperometric transformer with secondary 5 A , class $1-5 \mathrm{VA}$ (by the user)
- amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series
- standard capacitors on / off times: 60" (others on request)

QUALITY AND TESTING

Regulations Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.

European directives Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.
Testing 100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \measuredangle side up, \downarrow from the top
- The rated power is expressed at $415 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)
On request, the CCS remote monitoring system can be integrated to display the data in real time. For any specific information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond.com or directly upon request.

Table

THD(I)max. $=35 \%$
THD(Ic)max. $=80 \%$

Code	Type	Qn (kvar)	Cable entry	In (A)				Bank (k	ssize var)				Steps (n)	Switch isolator (A)	Controller (type)	Weight (kg)
8681412102350	G3E	10,2	\checkmark	14	3,4	3,4	3,4						3	40	BMR4	14
8681412159350	G3E	15.9	\checkmark	22	3.4	6,25	6,25						5	40	BMR4	15
8681412221350	G3E	22,15	\checkmark	31	3.4	6,25	12,5						7	80	BMR4	16
8681412310350	G3E	31,25	\checkmark	43	6,25	12,5	12,5						5	80	BMR4	18
8681412435350	G3E	43,75	\checkmark	61	6.25	12.5	25						7	125	BMR4	22
8681412500350	G3E	50	\checkmark	70	12.5	12,5	25						4	125	BMR4	23
8681412625350	G3E	62.5	\checkmark	87	12.5	25	25						5	125	BMR4	26
8681412750350	G4E	75	\checkmark	104	12.5	12,5	25	25					6	200	BMR4	38
8681413100350	G4E	100	\checkmark	139	12.5	12,5	25	50					8	200	BMR4	43
8681413125355	G4RM	125	\checkmark	174	25	50	50						5	250	BMR4	80
8681413150355	G4RM	150	\checkmark	209	25	25	50	50					6	315	BMR4	85
8681413175355	G4RM	175	\checkmark	243	25	50	50	50					7	400	BMR4	87
8681413200355	G4RM	200	\checkmark	278	25	25	50	100					8	400	BMR4	89
8681413225355	G4RM	225	\downarrow	313	25	50	50	100					9	500	BMR4	95
8681413250355	G4RM	250	\checkmark	348	25	50	75	100					10	500	BMR4	102
8681413300345	G6E	300	\downarrow	417	25	50	75	75	75				12	630	HPR6	175
8681413350345	G6E	350	\downarrow	487	50	75	75	75	75				9	800	HPR6	192
8681413400345	G6E	400	\downarrow	556	50	50	75	75	75	75			14	800	HPR6	207
8681413450345	G6E	450	\downarrow	626	50	50	50	75	75	150			16	1000	HPR6	240
8681413500345	G6E	500	\downarrow	696	50	75	75	75	75	150			13	1000	HPR6	255
8681413525450	G8E	525	\uparrow	731	75	75	75	75	75	75	75		7	1250	HPR12	315
8681413600450	G8E	600	\uparrow	836	75	75	75	75	75	75	75	75	8	1250	HPR12	330
8681413675450	G8E	675	\uparrow	940	75	75	75	75	75	75	75	150	9	1600	HPR12	350
8681413750450	G8E	750	\uparrow	1045	75	75	75	75	75	75	150	150	10	1600	HPR12	380
8681413825450	G8E (II)	825	\uparrow	1149	75	75	75	75	75	150	150	150	11	$800+1000$	HPR12	510
8681413900450	G8E (II)	900	\uparrow	1254	75	75	75	75	150	150	150	150	12	$1000+1000$	HPR12	530
8681413975450	G8E (II)	975	\uparrow	1358	75	75	75	150	150	150	150	150	13	$1000+1250$	HPR12	550
8681414105450	G8E (II)	1050	\uparrow	1462	75	75	150	150	150	150	150	150	14	$1000+1250$	HPR12	650
8681414120450	G8E (II)	1200	\uparrow	1671	75	75	150	150	150	150	150	300	16	$1250+1250$	HPR12	690
8681414135450	G8E (II)	1350	\uparrow	1880	75	75	150	150	150	150	300	300	18	$1600+1250$	HPR12	730

DMP-FTV

Automatic Power Factor Correction equipment

DMP-FTV series equipment are particularly suitable for threephase networks with operating voltage equal to 400 Vac (+/10%) with medium-high harmonic distortion in current. These equipment guarantee an accurate P.F.C., thanks to a multi-step design that effectively divides the power. In addition, on the G6E and G8E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- Auxiliaryvoltage

Overvoltage
Temperature range
Impulse withstand

415 Vac (others on request)
$50 \mathrm{~Hz}(60 \mathrm{~Hz}$ on request)

690 Vac

400 Vac forG3E, G4E, G4RM 230 Vac for G6E, G8E

1,1 Un (rated voltage)
$-5 /+40^{\circ} \mathrm{C}$

6 kV (G3E, G4E); 8 kV (G4RM, G6E, G8E)

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31, with the exception of type G3E and G4E with IP30 (others on request); internal paneI IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Natural for powers up to 200 kvar; Forced for powers over 200 kvar.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750 V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability. The limitation of current peaks caused by the insertion of the capacitive batteries is guaranteed by pre-charging resistors.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits ($\mathrm{NH}-00$ curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100 kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 600 Vac (maximum voltage 660 Vac) - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: -5\% / + 10\% - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category:-25 / D

Controller • type of measurement: varmetric.

- amperometric signal: by means of an amperometric transformer with secondary 5A, class $1-5 \mathrm{VA}$ (by the user)
- amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series
- standard capacitors on / offtimes: 60" (others on request)

QUALITY AND TESTING

Regulations Capacitors:IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives
Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.

[^2]
CONFIGURATION

General notes

－For dimensions，please consult the cabinet drawings，referring to the＂Type＂column．
－The indication for cable entry（power supply）is as follows：\uparrow from the bottom，\measuredangle side up，\downarrow from the top
－The rated power is expressed at $415 \mathrm{~V}-50 \mathrm{~Hz}$ ．
The choice of supply cables depends on the installation conditions，the length of the same and the ambient temperature．For a correct sizing，refer to the IEC 60364－5，CEI 64－8 and the UNEL 35024／01 standards．

Cloud Control System（CCS）

The symbol ₹ indicates that CCS，the remote monitoring system，is pre－installed on the P．F．C．equipment． For any specific information，and to find out the advantages of the Cloud Control System service，refer to the appropriate brochure available on www．comarcond．com or directly on request．

Table
$\operatorname{THD}(\mathrm{I}) \max =40 \% \quad \operatorname{THD}(\mathrm{IC}) \max .=90 \%$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Code \& Type \& \begin{tabular}{l}
Qn \\
（kvar）
\end{tabular} \& Cable entry \& \begin{tabular}{l}
In \\
（A）
\end{tabular} \& \& \& \& Ban

（k \& ssize \& \& \& \& \begin{tabular}{l}
Steps

（n）

 \&

Switch isolator

（A）

 \&

Controller

（tipo）

 \& CCS \&

Weight

（kg）
\end{tabular}

\hline 8881412250500 \& G3E \& 25 \& \checkmark \& 35 \& 6，25 \& 6，25 \& 12，5 \& \& \& \& \& \& 4 \& 80 \& BMR6 \& \& 15

\hline 8881412310500 \& G3E \& 31,25 \& \checkmark \& 43 \& 6.25 \& 12.5 \& 12,5 \& \& \& \& \& \& 5 \& 80 \& BMR6 \& \& 18

\hline 8881412435500 \& G3E \& 43.75 \& \checkmark \& 61 \& 6，25 \& 12.5 \& 25，0 \& \& \& \& \& \& 7 \& 125 \& BMR6 \& \& 22

\hline 8881412500500 \& G3E \& 50 \& \checkmark \& 70 \& 12.5 \& 12,5 \& 25，0 \& \& \& \& \& \& 4 \& 125 \& BMR6 \& \& 23

\hline 8881412625500 \& G3E \& 62,5 \& \checkmark \& 87 \& 12.5 \& 25，0 \& 25，0 \& \& \& \& \& \& 5 \& 125 \& BMR6 \& \& 26

\hline 8881412750500 \& G4E \& 75 \& \checkmark \& 104 \& 12.5 \& 12，5 \& 25 \& 25 \& \& \& \& \& 6 \& 200 \& BMR6 \& \& 38

\hline 8881413100500 \& G4E \& 100 \& \checkmark \& 139 \& 12.5 \& 12，5 \& 25 \& 50 \& \& \& \& \& 8 \& 200 \& BMR6 \& \& 46

\hline 8881413125500 \& G4RM \& 125 \& \checkmark \& 174 \& 12,5 \& 12,5 \& 50 \& 50 \& \& \& \& \& 5 \& 250 \& BMR6 \& \& 83

\hline 8881413150500 \& G4RM \& 150 \& \checkmark \& 209 \& 25 \& 25 \& 50 \& 50 \& \& \& \& \& 6 \& 315 \& BMR6 \& \& 84

\hline 8881413175500 \& G4RM \& 175 \& \checkmark \& 243 \& 25 \& 50 \& 50 \& 50 \& \& \& \& \& 7 \& 400 \& BMR6 \& \& 87

\hline 8881413200500 \& G4RM \& 200 \& \checkmark \& 278 \& 25 \& 25 \& 50 \& 100 \& \& \& \& \& 8 \& 400 \& BMR6 \& \& 89

\hline 8881413225500 \& G4RM \& 225 \& \checkmark \& 313 \& 25 \& 50 \& 50 \& 100 \& \& \& \& \& 9 \& 500 \& BMR6 \& \& 95

\hline 8881413250500 \& G4RM \& 250 \& \checkmark \& 348 \& 25 \& 50 \& 75 \& 100 \& \& \& \& \& 10 \& 500 \& BMR6 \& \& 102

\hline 888141330045 R \& G6E \& 300 \& \downarrow \& 417 \& 25 \& 50 \& 75 \& 75 \& 75 \& \& \& \& 12 \& 630 \& HPR6 \& 令 \& 175

\hline 888141335045 R \& G6E \& 350 \& \downarrow \& 487 \& 50 \& 75 \& 75 \& 75 \& 75 \& \& \& \& 7 \& 800 \& HPR6 \& 今 \& 192

\hline 888141340045R \& G6E \& 400 \& \downarrow \& 556 \& 50 \& 50 \& 75 \& 75 \& 75 \& 75 \& \& \& 8 \& 800 \& HPR6 \& ® \& 207

\hline 888141345045 R \& G6E \& 450 \& \downarrow \& 626 \& 50 \& 50 \& 50 \& 75 \& 75 \& 150 \& \& \& 9 \& 1000 \& HPR6 \& \& 240

\hline 888141350045 R \& G6E \& 500 \& \downarrow \& 696 \& 50 \& 75 \& 75 \& 75 \& 75 \& 150 \& \& \& 10 \& 1000 \& HPR6 \& § \& 255

\hline 888141360050R \& G8E \& 600 \& \uparrow \& 836 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 8 \& 1250 \& HPR12 \& 令 \& 330

\hline 888141365050R \& G8E \& 650 \& \uparrow \& 904 \& 50 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 150 \& 11 \& 1600 \& HPR12 \& \& 345

\hline 888141375050R \& G8E \& 750 \& \uparrow \& 1045 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 150 \& 150 \& 10 \& 1600 \& HPR12 \& § \& 380

\hline 888141382550R \& G8E（II） \& 825 \& \uparrow \& 1149 \& 75 \& 75 \& 75 \& 75 \& 75 \& 150 \& 150 \& 150 \& 11 \& 800＋1000 \& HPR12 \& § \& 510

\hline 888141390050R \& G8E（II） \& 900 \& \uparrow \& 1254 \& 75 \& 75 \& 75 \& 75 \& 150 \& 150 \& 150 \& 150 \& 12 \& $1000+1000$ \& HPR12 \& ® \& 530

\hline
\end{tabular}

Other solutions are available on request．

Discover our range of MK-AS Capacitors for Power Factor Correction in absolute Safety!

Certified by $I M Q$, our single-phase capacitors are designed to guarantee the best effectiveness in correcting the power factor!

AAR/100 • AAR/138 • AAR/600 • AAR/D20

Automatic P.F.C. with Detuning Reactors

AAR/100 series equipment are particularly suitable for threephase networks with high harmonic distortion. These equipment guarantee an accurate P.F.C., thanks to a multi-step design that effectively divides the power. In addition, on the G6E and G8E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- auxiliaryvoltage
- Overvoltage
- Temperaturerange
- Impulse withstand

400 Vac (others on request)
50 Hz (60 Hz on request)
690 Vac
$230 \mathrm{Vac}(110 \mathrm{Vac}$ on request)
1,1 Un (rated voltage)
$-5 /+40^{\circ} \mathrm{C}$

6 kV (G4E);
8 kV (G4RM, G6E, G8E)

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31, with the exception of type G4E with IP30 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Forced.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits ($\mathrm{NH}-00$ curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 500 Vac (maximum voltage 550 Vac$)$ - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: $-5 \% /+10 \%$ - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D
Detuning reactors	Tuning frequency: $189 \mathrm{~Hz}(p=7 \%)$ Power losses: $6 \mathrm{~W} / \mathrm{kvar}$ (AVG) Max. Harmonic distortion of the voltage allowed on the networks is: $\operatorname{THDU}=3 \%(189 \mathrm{~Hz})$. On request: $\mathrm{AAR} / 6$ (THDU $=10 \%)$.
Controller	- type of measurement: varmetric. - amperometric signal: by means of an amperometric transformer with secondary 5A, class $1-5 \mathrm{VA}$ (by the user) - amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series - standard capacitors on / offtimes: 60" (others on request)

QUALITY AND TESTING

Regulations Capacitors:IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.

Abstract

Testing 100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \swarrow side up, \downarrow from the top
- The rated power is expressed at $400 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)

On request, the CCS remote monitoring system can be integrated to display the data in real time. For any specific information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond. com or directly upon request.

Table

THD(I)max. $=100 \%$
THD(U)max. $=3 \%$
$p=7 \%$

Code	Type	Qn (kvar)	Cable entry	In				Bankssize					Steps (n)	Switch isolator (A)	Controller (type)	Weight (kg)
8561402250700	G4E	25	\swarrow	36	6.25	6,25	12,5						4	200	BMR4	88
8561402310700	G4E	31	\checkmark	44	6,25	12,5	12.5						5	200	BMR4	90
8561402435700	G4E	43.5	\swarrow	63	6,25	12.5	25						7	200	BMR4	100
8561402500700	G4RM	50	\downarrow	72	12.5	12.5	25						4	200	BMR4	105
8561402625700	G4RM	62,5	\downarrow	90	12.5	25	25						5	200	BMR4	115
8561402750700	G4RM	75	\downarrow	108	12.5	12.5	25	25					6	200	BMR4	125
8561403100700	G4RM	100	\downarrow	144	25	25	25	25					4	250	BMR4	145
8561403125700	G6E	125	\downarrow	180	25	50	50						5	315	HPR6	200
8561403150700	G6E	150	\downarrow	216	25	50	75						6	400	HPR6	220
8561403175700	G6E	175	\downarrow	252	25	50	50	50					7	400	HPR6	250
8561403200700	G6E	200	\downarrow	288	25	50	50	75					8	500	HPR6	270
8561403225700	G6E	225	\downarrow	324	25	50	75	75					9	500	HPR6	300
8561403250700	G6E	250	\downarrow	360	25	25	50	75	75				10	630	HPR6	320
8561403275700	G6E	275	\downarrow	397	25	50	50	75	75				11	630	HPR6	340
8561403300700	G6E	300	\downarrow	432	25	50	75	75	75				12	800	HPR6	360
8561403350700	G8E	350	\uparrow	504	50	75	75	75	75				9	800	HPR6	390
8561403375700	G8E	375	\uparrow	541	25	50	75	75	75	75			15	800	HPR6	410
8561403400700	G8E (II)	400	\uparrow	576	50	50	75	75	75	75			14	1000	HPR6	550
8561403450700	G8E (II)	450	\uparrow	648	25	50	75	75	75	75	75		18	1000	HPR12	600
8561403500700	G8E (II)	500	\uparrow	720	50	75	75	75	75	75	75		13	1250	HPR12	650
8561403550700	G8E (II)	550	\uparrow	792	50	50	75	75	75	75	75	75	19	1250	HPR12	700
8561403600700	G8E (II)	600	\uparrow	864	75	75	75	75	75	75	75	75	8	1600	HPR12	750
8561403650700	G8E (II)	650	\uparrow	936	50	75	75	75	75	75	75	150	16	800+630	HPR12	800
8561403750700	G8E (II)	750	\uparrow	1080	75	75	75	75	75	75	150	150	10	800+800	HPR12	850
8561403825700	G8E (III)	825	\uparrow	1191	75	75	75	75	75	150	150	150	11	$800+1000$	HPR12	1000
8561403900700	G8E (III)	900	\uparrow	1299	75	75	75	75	150	150	150	150	12	$800+1250$	HPR12	1050
8561403975700	G8E (III)	975	\uparrow	1407	75	75	75	150	150	150	150	150	13	$800+1250$	HPR12	1100
8561404105700	G8E (III)	1050	\uparrow	1516	75	75	150	150	150	150	150	150	14	$800+1600$	HPR12	1150

AAR/138 series equipment are particularly suitable for threephase networks with high harmonic distortion in current with presence of 3° order harmonics. These equipment guarantee an accurate P.F.C., thanks to a multi-step design that effectively divides the power. In addition, on the G6E and G9E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- auxiliaryvoltage
- Overvoltage
- Temperaturerange
- Impulse withstand

HARMONIC CONTENT

THD(I)max. $=100 \%$
on the network
THD(U)max. $=6 \%$ on the network

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Forced.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750 V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits ($\mathrm{NH}-00$ curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking powerfuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 550 Vac (maximum voltage 600 Vac$)$ - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: -5\% / + 10\% - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D
Detuning reactors	Tuning frequency: $138 \mathrm{~Hz}(p=14 \%)$ Power losses: 6,5 W/kvar (AVG) Max. Harmonic distortion of the voltage allowed on the networks is: $\operatorname{THDU}=6 \%(138 \mathrm{~Hz})$. On request: higher THDU values.
Controller	- type of measurement: varmetric. - amperometric signal: by means of an amperometric transformer with secondary 5A, class $1-5 \mathrm{VA}$ (by the user) - amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series - standard capacitors on / offtimes: 60" (others on request)

QUALITY AND TESTING

Regulations Capacitors:IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.

Abstract

Testing 100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \swarrow side up, \downarrow from the top
- The rated power is expressed at $400 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)

On request, the CCS remote monitoring system can be integrated to display the data in real time. For any specific information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond.com or directly upon request.

Table

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \multicolumn{4}{|l|}{THD(I)max. \(=100 \%\)} \& \multicolumn{4}{|l|}{THD(U)max. \(=6 \%\)} \& \multicolumn{4}{|l|}{\(p=14 \%\)} \& \& \\
\hline Code \& Type \& Qn (kvar) \& Cable entry \& \begin{tabular}{l}
In \\
(A)
\end{tabular} \& \& \& \& Bank

(k \& \begin{tabular}{l}
size

ar)

 \& \& \& \&

Steps

(n)

 \&

Switch isolator

(A)

 \&

Controller

(type)

 \&

Weight

(kg)
\end{tabular}

\hline 8821403100750 \& G6E \& 100 \& \downarrow \& 144 \& 25 \& 25 \& 50 \& \& \& \& \& \& 4 \& 250 \& HPR6 \& 190

\hline 8821403125700 \& G6E \& 125 \& \downarrow \& 180 \& 25 \& 50 \& 50 \& \& \& \& \& \& 5 \& 315 \& HPR6 \& 200

\hline 8821403150750 \& G6E \& 150 \& \downarrow \& 216 \& 25 \& 25 \& 50 \& 50 \& \& \& \& \& 6 \& 400 \& HPR6 \& 220

\hline 8821403175700 \& G6E \& 175 \& \downarrow \& 252 \& 25 \& 50 \& 50 \& 50 \& \& \& \& \& 7 \& 400 \& HPR6 \& 250

\hline 8821403200750 \& G6E \& 200 \& \uparrow \& 288 \& 25 \& 25 \& 50 \& 50 \& 50 \& \& \& \& 8 \& 500 \& HPR6 \& 270

\hline 8821403225750 \& G9E \& 225 \& \uparrow \& 324 \& 25 \& 50 \& 75 \& 75 \& \& \& \& \& 9 \& 500 \& HPR6 \& 320

\hline 8821403250750 \& G9E \& 250 \& \uparrow \& 360 \& 25 \& 25 \& 50 \& 75 \& 75 \& \& \& \& 10 \& 630 \& HPR6 \& 340

\hline 8821403275750 \& G9E \& 275 \& \uparrow \& 397 \& 25 \& 50 \& 50 \& 75 \& 75 \& \& \& \& 11 \& 630 \& HPR6 \& 370

\hline 8821403300750 \& G9E \& 300 \& \uparrow \& 432 \& 25 \& 50 \& 75 \& 75 \& 75 \& \& \& \& 12 \& 800 \& HPR6 \& 380

\hline 8821403350750 \& G9E \& 350 \& \uparrow \& 504 \& 25 \& 25 \& 75 \& 75 \& 75 \& 75 \& \& \& 14 \& 800 \& HPR6 \& 410

\hline 8821403400750 \& G9E (II) \& 400 \& \uparrow \& 576 \& 50 \& 50 \& 75 \& 75 \& 75 \& 75 \& \& \& 14 \& 1000 \& HPR6 \& 590

\hline 8821403450750 \& G9E (II) \& 450 \& \uparrow \& 648 \& 25 \& 50 \& 75 \& 75 \& 75 \& 75 \& 75 \& \& 18 \& 1000 \& HPR12 \& 640

\hline 8821403500750 \& G9E (II) \& 500 \& \uparrow \& 720 \& 50 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& \& 13 \& 1250 \& HPR12 \& 690

\hline 8821403550750 \& G9E (II) \& 550 \& \uparrow \& 792 \& 50 \& 50 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 19 \& 1250 \& HPR12 \& 740

\hline 8821403600750 \& G9E (II) \& 600 \& \uparrow \& 864 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 8 \& 1600 \& HPR12 \& 790

\hline 8821403650750 \& G9E (II) \& 650 \& \uparrow \& 936 \& 50 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 150 \& 16 \& $800+630$ \& HPR12 \& 840

\hline 8821403750750 \& G9E (II) \& 750 \& \uparrow \& 1080 \& 75 \& 75 \& 75 \& 75 \& 75 \& 75 \& 150 \& 150 \& 10 \& 800+800 \& HPR12 \& 890

\hline 8821403825750 \& G9E (III) \& 825 \& \uparrow \& 1191 \& 75 \& 75 \& 75 \& 75 \& 75 \& 150 \& 150 \& 150 \& 11 \& $800+1000$ \& HPR12 \& 1060

\hline 8821403900750 \& G9E (III) \& 900 \& \uparrow \& 1299 \& 75 \& 75 \& 75 \& 75 \& 150 \& 150 \& 150 \& 150 \& 12 \& $800+1250$ \& HPR12 \& 1110

\hline 8821403975750 \& G9E (III) \& 975 \& \uparrow \& 1407 \& 75 \& 75 \& 75 \& 150 \& 150 \& 150 \& 150 \& 150 \& 13 \& $800+1250$ \& HPR12 \& 1160

\hline 8821404105750 \& G9E (III) \& 1050 \& \uparrow \& 1516 \& 75 \& 75 \& 150 \& 150 \& 150 \& 150 \& 150 \& 150 \& 14 \& $800+1600$ \& HPR12 \& 1210

\hline
\end{tabular}

Other solutions are available on request.

AAR/600 series equipment are particularly suitable for threephase networks with high harmonic distortion. These equipment guarantee an accurate P.F.C., thanks to a multi-step design that effectively divides the power. In addition, on the G6E and G8E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- auxiliaryvoltage
- Overvoltage
- Temperaturerange
- Impulse withstand

HARMONIC CONTENT

THD(I)max. $=100 \%$
on the network
THD(U)max. $=6 \%$ on the network

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Forced.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750 V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits ($\mathrm{NH}-00$ curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 500 Vac (maximum voltage 550 Vac) - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: -5\% / + 10\% - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D
Detuning reactors	Tuning frequency: $189 \mathrm{~Hz}(p=7 \%)$ Power losses: $6 \mathrm{~W} / \mathrm{kvar}$ (AVG) Max. Harmonic distortion of the voltage allowed on the networks is: $\operatorname{THDU}=6 \%(189 \mathrm{~Hz})$. On request: AAR/6 (THDU = 10\%).
Controller	- type of measurement: varmetric. - amperometric signal: by means of an amperometric transformer with secondary 5A, class 1 - 5 VA (by the user) - amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series - standard capacitors on / offtimes: 60" (others on request)

QUALITY AND TESTING

Regulations
Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.

Abstract

Testing 100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \swarrow side up, \downarrow from the top
- The rated power is expressed at $400 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)

On request, the CCS remote monitoring system can be integrated to display the data in real time. For any spe雨ic information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond.com or directly upon request.

Table

$$
\text { HD(I)max. }=100 \% \quad \text { THD(U)max. }=6 \% \quad p=7 \%
$$

THD (I)max. $=100 \% \quad$ THD(U) max. $=6 \% \quad p=7 \%$

Code	Type	Qn (kvar)	Cable entry	In (A)					ssize var)				Steps (n)	Switch isolator (A)	Controller (type)	Weight (kg)
8551402500600	G4RM	50	\downarrow	72	12.5	12,5	25						4	200	BMR4	105
8551402625600	G4RM	62,5	\downarrow	90	12,5	25	25						5	200	BMR4	115
8551402750600	G4RM	75	\downarrow	108	12,5	12,5	25	25					6	200	BMR4	125
8551403100600	G6E	100	\downarrow	144	25	25	50						4	250	HPR6	180
8551403125600	G6E	125	\downarrow	180	25	50	50						5	315	HPR6	210
8551403150600	G6E	150	\downarrow	216	25	50	75						6	400	HPR6	230
8551403175600	G6E	175	\downarrow	252	25	50	50	50					7	400	HPR6	260
8551403200600	G6E	200	\downarrow	288	25	50	50	75					8	500	HPR6	280
8551403225600	G6E	225	\downarrow	324	25	50	75	75					9	500	HPR6	315
8551403250600	G6E	250	\downarrow	360	25	25	50	75	75				10	630	HPR6	355
8551403275600	G8E	275	\uparrow	397	25	50	50	75	75				11	630	HPR6	370
8551403300600	G8E	300	\uparrow	432	25	50	75	75	75				12	800	HPR6	380
8551403350600	G8E	350	\uparrow	504	50	75	75	75	75				9	800	HPR6	400
8551403375600	G8E (II)	375	\uparrow	541	25	50	75	75	75	75			15	800	HPR6	520
8551403400600	G8E (II)	400	\uparrow	576	50	50	75	75	75	75			14	1000	HPR6	570
8551403450600	G8E (II)	450	\uparrow	648	25	50	75	75	75	75	75		18	1000	HPR12	620
8551403500600	G8E (II)	500	\uparrow	720	50	75	75	75	75	75	75		13	1250	HPR12	670
8551403550600	G8E (II)	550	\uparrow	792	50	50	75	75	75	75	75	75	19	1250	HPR12	720
8551403600600	G8E (II)	600	\uparrow	864	75	75	75	75	75	75	75	75	8	1600	HPR12	770
8551403650600	G8E (II)	650	\uparrow	936	50	75	75	75	75	75	75	150	16	$800+630$	HPR12	820
8551403750600	G8E (II)	750	\uparrow	1080	75	75	75	75	75	75	150	150	10	800+800	HPR12	880
8551403825600	G8E (III)	825	\uparrow	1191	75	75	75	75	75	150	150	150	11	$800+1000$	HPR12	1040
8551403900600	G8E (III)	900	\uparrow	1299	75	75	75	75	150	150	150	150	12	$800+1250$	HPR12	1090
8551403975600	G8E (III)	975	\uparrow	1407	75	75	75	150	150	150	150	150	13	$800+1250$	HPR12	1140
8551404100600	G8E (III)	1050	\uparrow	1516	75	75	150	150	150	150	150	150	14	$800+1600$	HPR12	1190

[^3]

AAR/D20 series equipment are particularly suitable for threephase networks with high harmonic distortion. These equipment guarantee an accurate P.F.C., thanks to a multi-step design that effectively divides the power. In addition, on the G6E and G9E cabinet, all the capacitors banks are assembled on racks, easily removable from the front of the panel, for simple management and maintenance.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- Auxiliaryvoltage
- Overvoltage
- Temperaturerange
- Impulse withstand

HARMONIC CONTENT

THD(I)max. $=100 \%$
on the network
THD(U)max. $=20 \%$ on the network

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Forced.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits (NH-00 curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 550 Vac (maximum voltage 600 Vac$)$ - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: $-5 \% /+10 \%$ - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D
Detuning reactors	Tuning frequency: $189 \mathrm{~Hz}(p=7 \%)$ Power losses: 6 W / kvar (AVG) Max. Harmonic distortion of the voltage allowed on the networks is: THDU $=20 \%(189 \mathrm{~Hz})$.

Controller • type of measurement: varmetric.

- amperometric signal: by means of an amperometric transformer with secondary 5 A , class $1-5 \mathrm{VA}$ (by the user)
- amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series
- standard capacitors on / off times: 60" (others on request)

QUALITY AND TESTING

Regulations	Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives	Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.

Abstract

Testing 100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \swarrow side up, \downarrow from the top
- The rated power is expressed at $400 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)

The symbol $₹$ indicates that CCS, the remote monitoring system, is pre-installed on the P.F.C. equipment. For any specific information, and to find out the advantages of the Cloud Control System service, refer to the appropriate brochure available on www.comarcond.com or directly on request.

Table
THD(I)max. $=100 \%$
THD(U)max. $=20 \%$
$p=7 \%$

Code	Type	Qn (kvar)	Cable entry	In (A)				Bank (kv	ssize var)				Steps (n)	Switch isolator (A)	Controller (type)	CCS	Weight (kg)
854140310062R	G6E	100	\downarrow	144	25	25	50						4	250	HPR6	\%	200
854140312562R	G6E	125	\downarrow	180	25	50	50						5	315	HPR6	ล	259
854140315072R	G6E	150	\downarrow	216	25	25	50	50					6	400	HPR6	\%	276
854140317562R	G6E	175	\downarrow	252	25	50	50	50					7	400	HPR6	(332
854140320072R	G9E	200	\uparrow	288	25	50	50	75					8	500	HPR6	ร	349
854140322572R	G9E	225	\uparrow	324	25	50	75	75					9	500	HPR6	ล	376
854140325072R	G9E	250	\uparrow	360	25	25	50	75	75				10	630	HPR6	§	400
854140327572R	G9E	275	\uparrow	397	25	50	50	75	75				11	630	HPR6	§	440
854140330072R	G9E	300	\uparrow	432	25	50	75	75	75				12	800	HPR6	§	485
854140335072R	G9E	350	\uparrow	504	50	75	75	75	75				7	800	HPR6	ล	520
854140340062R	G9E (II)	400	\uparrow	576	50	50	75	75	75	75			8	1000	HPR6		656
854140345062R	G9E (II)	450	\uparrow	648	25	50	75	75	75	75	75		18	1000	HPR12	ล	772
854140350062R	G9E (II)	500	\uparrow	720	50	75	75	75	75	75	75		10	1250	HPR12	§	800
854140355062R	G9E (II)	550	\uparrow	792	50	50	75	75	75	75	75	75	11	1250	HPR12	ร	866
854140360062R	G9E (II)	600	\uparrow	864	75	75	75	75	75	75	75	75	8	1600	HPR12	ร	910
854140365062R	G9E (II)	650	\uparrow	936	50	75	75	75	75	75	75	150	13	800+630	HPR12	ล	985
854140375062 R	G9E (II)	750	\uparrow	1080	75	75	75	75	75	75	150	150	10	$800+800$	HPR12	§	1050
854140382562R	G9E (III)	825	\uparrow	1191	75	75	75	75	75	150	150	150	11	$800+1000$	HPR12	ล	1220
854140390062R	G9E (III)	900	\uparrow	1299	75	75	75	75	150	150	150	150	12	$800+1250$	HPR12	§	1300
854140397562R	G9E (III)	975	\uparrow	1407	75	75	75	150	150	150	150	150	13	$800+1250$	HPR12	§	1380
854140410562R	G9E (III)	1050	\uparrow	1516	75	75	150	150	150	150	150	150	14	$800+1600$	HPR12	§	1460

Other solutions are available on request.

Try the Cloud Control System!
The solution for the remote monitoring of the Automatic P.F.C. Equipment

B35-ST • AAR/100-ST

Automatic P.F.C.

The entire B35-ST series is equipped with "zero-crossing" static relays (thyristors), and it has been designed to improve the performance of traditional equipment, such as: increasing the life of the capacitors banks, decreasing the time response of the equipment to follow rapid changes in loads with a medium-low harmonic distortion.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- auxiliaryvoltage
- Overvoltage
- Temperaturerange
- Impulse withstand

415 Vac (others on request)
50 Hz (60 Hz on request)
690 Vac
230 Vac (110 Vac on request)
1,1 Un (rated voltage)
$-5 /+40^{\circ} \mathrm{C}$

8 kV

HARMONIC CONTENT (in the absence of resonance)

THD(1)max. $=25 \%$
THD(Ic)max. $=70 \%$
on the network
on the capacitors

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Installation	Indoor installation, in a well ventilated position away from heat sources.
Ventilation	Forced.
Switch isolator	Tri-polar off-load disconnector.
Wiring	The internal connections are made with flame retardant FS17-450/750V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
Insertion	Static, based on the use of thyristors, controlled by a microprocessor such that the switching on of the electronic components occurs when the potential difference between the network and the capacitors is zero. In this way dangerous transients are avoided, with negative effects on the network, even when the capacitors are partially charged. The disconnection takes place at zero current (that is, shutdown occurs at the natural zero current passage of the static power factor correction) The microprocessor control ensures for the static system a maximum delay for the insertion of the capacitor banks of 200 ms .
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits (NH-00 curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 440 Vac (maximum voltage 500 Vac) - overvoltage: $1.1 \times \mathrm{A}$ (8h/24h) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: $-5 \% /+10 \%$ - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D
Controller	- type of measurement: varmetric. - amperometric signal: by means of an amperometric transformer with secondary 5A, class $1-5 \mathrm{VA}$ (by the user) - amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series - switching on / off times of the single capacitor bank: 1 "

QUALITY AND TESTING

Regulations Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.
Testing 100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitorsare tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- \quad The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \swarrow side up, \downarrow from the top
- The rated power is expressed at $415 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)

On request, the CCS remote monitoring system can be integrated to display the data in real time.
For any specific information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond.com or directly upon request.

Table

THD (I)max. $=25 \% \quad$ THD (Ic) max. $=70 \%$

All automatic P.F.C.series, with ot without blocking reactors, can be realized with static insertion.
Other solutions are available on request

The entire AAR/100-ST series is equipped with "zero-crossing" static relays (thyristors), and it has been designed to improve the performance of traditional equipment, such as: increasing the life of the capacitors banks, decreasing the time response of the equipment to follow rapid changes in loads. Suitable for applications with high harmonic distortion such as automotive, harbours, mechanical workshops, ...

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- auxiliaryvoltage
- Overvoltage
- Temperature range
- Impulse withstand

HARMONIC CONTENT

THD(I)max. $=100 \%$
on the network
THD(U)max. $=3 \%$
on the network

TECHNICAL DATA

Enclosures Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).

Installation Indoor installation, in a well ventilated position away from heat sources.

Ventilation Forced.

Switch isolator Tri-polar off-load disconnector.

Wiring	The internal connections are made with flame retardant FS17-450/750V cables with very low smoke emission (other types of cables on request). On the non-pre-insulated terminals the connection point is covered with a long-life heat-shrinking sheath. The auxiliary voltage are appropriately identified in compliance with current regulations.
Insertion	Static, based on the use of thyristors, controlled by a microprocessor such that the switching on of the electronic components occurs when the potential difference between the network and the capacitors is zero. In this way dangerous transients are avoided, with negative effects on the network, even when the capacitors are partially charged. The disconnection takes place at zero current (that is, shutdown occurs at the natural zero current passage of the static power factor correction) The microprocessor control ensures for the static system a maximum delay for the insertion of the capacitor banks of $200 \mathrm{ms}$.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits (NH-00 curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking powerfuses (100kA).

Capacitors	Condensatori monofase in polipropilene metallizzato autorigenerabile (MKP), dotati di dispositivo antiscoppio e resistenza di scarica. Sono impregnati in olio vegetale, esente da PCB. Collegamento a triangolo. Tipo di servizio continuativo. - tensione nominale: 500 Vac (tensione massima 550 Vac) - sovratensione: $1,1 \times$ Un (8h / 24h) - sovraccarico di corrente: $1,3 \times \mathrm{In}$ - tolleranza sulla capacità: $-5 \% /+10 \%$ - perdite per dissipazione: $\leq 0,4 \mathrm{~W} / \mathrm{kvar}$ - categoria temperatura:-25/D
Detuning reactors	Tuning frequency: $189 \mathrm{~Hz}(p=7 \%)$ Power losses: $6 \mathrm{~W} / \mathrm{kvar}$ (AVG) Max. Harmonic distortion of the voltage allowed on the networks is: THDU $=3 \%(189 \mathrm{~Hz})$. On request: AAR / 6 (THDU = 10\%).

Controller • type of measurement:varmetric.

- amperometric signal: by means of an amperometric transformer with secondary 5A, class $1-5 \mathrm{VA}$ (by the user)
- amperometric signal sensitivity: 2.5% for BMR series, 0.3% for HPR series
- switching on / off times of the single capacitor bank: 1 "

QUALITY AND TESTING

Regulations Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment:IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.
Testing $\quad 100 \%$ of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitorsare tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- For dimensions, please consult the cabinet drawings, referring to the "Type" column.
- \quad The indication for cable entry (power supply) is as follows: \uparrow from the bottom, \swarrow side up, \downarrow from the top
- The rated power is expressed at $400 \mathrm{~V}-50 \mathrm{~Hz}$.

The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

Cloud Control System (CCS)

On request, the CCS remote monitoring system can be integrated to display the data in real time. For any specific information, and to discover the advantages of the Cloud Control System service, we refer to the specific brochure available on the website www.comarcond.com or directly upon request.

Table

$$
\text { THD(I)max. }=100 \% \quad \text { THD(U) max. }=3 \% \quad P=7 \%
$$

[^4]On our website you can consult the manuals of our Controllers!

FA05 • FAM05 • FAMO5/07
Passive Filters and Passive Modular Three-Phase Filters

FA05 series is specially designed for the knock down of current harmonics generated by U.P.S, in industrial applications. The passive filter is realized by tuning in frequency a capacitor bank and a three-phase reactance. In this way there is a resonant circuit which is chosen as the preferential way from the harmonic current which is to be reduced: in fact, the filter has a sufficiently low impedance value only at the frequency value to which it is tuned.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- auxiliaryvoltage
- Overvoltage
- Temperature range
- Impulse withstand

TUNED FILTER

5° grade Harmonic

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Ventilation	Forced.
Thermal	Made by means of two thermoprobes. The first, with an operating threshold of $35^{\circ} \mathrm{C}$, controls the insertion of the cooling fans on the roof. The second ($50^{\circ} \mathrm{C}$) separates the filter branch if the temperature exceeds the maximum allowed limit. When the phenomenon ceases, there is automatic recovery.
Insertion	Manual, or automatic piloted remotely (commands by the installer).
Supply	To be carried out directly on the line choke or on the power supply of the fuses.
	Three-phase input + grounding cable from below for G6E and G8E cabinets. The termination of an NC contact of max 5 Amps 250 Vac for the remote indication of the operation of the equipment is provided by a terminal board. If not used,
the remote control must be short-circuited.	

Signals On the front of each panel there is a luminous signal with green light for a live panel, the selector for the insertion of the filter with white light, the intervention of the amperometric protection with yellow light and the relative reset button, the intervention maximum temperature with yellow light signal..

3-pole Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability.
Fuses Each capacitors bank is protected by fuses. The protection system of both the power circuits (NH-00 curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service.

- rated voltage: 500 Vac
- overvoltage: $1.1 \times \mathrm{A}$ (8h / 24h)
- current overload: $1.3 \times \mathrm{ln}$
- capacity tolerance: $-5 \% /+10 \%$
- losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$
- temperature category: -25 / D

Line reactor It is manufactured using magnetic low losses core plates. When used, it allows the decoupling of the load and the filter (on request) from the network for a correct current sharing between the network and the filter. It also ensures the correct operation of the filter in case of varying distortion in the network.
Filtering reactor It is manufactured using magnetic low losses core plates and it is tuned with the capacitors. Class H and linearity up to $2 \ln$.

- agreement frequency of 245 Hz (FA05)
- losses due to dissipation: depending on the power of the filter
- maximum possible harmonic harmonic distortion in the THD network $(\mathrm{v})=5 \%$ (others on request).
Amperometric Protects condenser banks by disabling them in case of overcurrents. protection

QUALITY AND TESTING

Regulations European directives Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.

Testing
100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- The rated power is expressed at $400 \mathrm{~V}-50 \mathrm{~Hz}$.
- The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

The application of the filters involves an in-depth analysis of the operating conditions of the system.
Below is a list of the information essential for a correct sizing:

- Nominal data and operating cycle of the load to be filtered.
- Campaign of harmonic distortion measurements, to determine the frequency and the value of the harmonic current to be reduced.
- Electrical scheme of the system, with indication of the installation point of the filter.
- Presence of power factor correction equipment (automatic or fixed), type and location.
- Nominal data of other distorting loads present in the system.

Table

Code	Load Data			Filter Data					
	Max. power load U.P.S. (kVA)	Pn^{1} (kW)	Rated current (A)	5th harmonic current to be filtered (A)	Reactive power (kvar)	Reactive current (A)	Impact resistance degree	Type (mm)	Weight (kg)
FA05 15-400	15	12	22	8	6	9	IK05	G6E	60
FA05 20-400	20	16	30	12	8	11	IK05	G6E	71
FA05 30-400	30	24	42	16	10	14	IK05	G6E	79
FA05 40-400	40	32	60	24	13	19	IK05	G6E	95
FA05 55-400	55	44	80	32	18	25	IK05	G6E	105
FA05 70-400	70	56	100	40	22	32	IK05	G6E	115
FA05 90-400	90	72	130	52	26	38	IK10	G6E	240
FA05 110-400	110	88	160	64	32	46	IK10	G8E	265
FA05 140-400	140	112	200	80	41	59	IK10	G8E	280
FA05 180-400	180	144	260	105	52	75	IK10	G8E	305
FA05 230-400	230	184	330	132	67	97	IK10	G8E	340
FA05 270-400	270	216	390	155	79	114	\|K10	G8E	385
FA05 320-400	320	256	460	185	97	140	IK10	G8E	415
FA05 360-400	360	288	520	210	110	159	IK10	G8E	430
FA05 410-400	410	328	590	236	123	178	IK10	G8E	450
FA05 450-400	450	360	650	260	138	199	IK10	G8E	475
FA05 500-400	500	400	720	288	152	219	IK10	G8E (II)	490
FA05 550-400	550	440	790	310	167	241	IK10	G8E (II)	530
FA05 600-400	600	480	865	340	182	263	IK10	G8E (II)	720

[^5]

FAM05 is realized by appropriately tuning in frequency, a battery of capacitors and a three-phase reactance. In this way a resonant circuit is realized which is chosen as the preferred way from the harmonic current which is to be reduced, and is equipped with a microprocessor control system for inserting modules. Features: - consisting of standard racks of equal dimensions connected to each other

- Easily increases the size of the filter
- prevents the insertion of filter groups L-C, having too high reactive power, bring the power factor of the load to a capacitive $\cos \varphi$, with possible consequent problems of DC drives.

PERFORMANCE DATA

- Rated voltage
- Rated frequency
- Insulationvoltage
- auxiliaryvoltage
- Overvoltage
- Temperaturerange
- Impulse withstand

400 Vac (altre a richiesta)
50 Hz (a richiesta 60 Hz)
690 Vac

230 Vac
1,1 Un (tensione nominale)
$-5 /+40^{\circ} \mathrm{C}$

8 kV

TUNED FILTER

Filtri di $5^{\text {a }}$ Armonica

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Ventilation	Forced.
Thermal protection	Made by means of two thermoprobes. The first, with an operating threshold of $35^{\circ} \mathrm{C}$, controls the insertion of the cooling fans on the roof. The second ($50^{\circ} \mathrm{C}$) separates the filter branch if the temperature exceeds the maximum allowed limit. When the phenomenon ceases, there is automatic recovery.
Insertion	Manual, or automatic piloted remotely (commands by the installer).
Supply	To be carried out directly on the line choke or on the power supply of the fuses.
	Three-phase input + grounding cable from below for G6E and G8E cabinets. The termination of an NC contact of max 5 Amps 250 Vac for the remote indication of the operation of the equipment is provided by a terminal board. If not used, the remote control must be short-circuited.
Signals	On the front of each panel there is a luminous signal with green light for a live panel, the selector for the insertion of the filter with white light, the intervention of the amperometric protection with yellow light and the relative reset button, the intervention maximum temperature with yellow light signal..
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits (NH-00 curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100 kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 550 Vac - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{In}$ - capacity tolerance: -5\% / + 10\% - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D

Filtering reactor	It is manufactured using magnetic low losses core plates and it is tuned with the capacitors. Class H and linearity up
	to 2 ln.
	• agreement frequency of 245 Hz (FAO5)
	• Iosses due to dissipation: depending on the power of the filter

QUALITY AND TESTING

Regulations

Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment:IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.
Testing 100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- The rated power is expressed at $400 \mathrm{~V}-50 \mathrm{~Hz}$.
- The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

The application of the filters involves an in-depth analysis of the operating conditions of the system.
Below is a list of the information essential for a correct sizing:

- Nominal data and operating cycle of the load to be filtered.
- Campaign of harmonic distortion measurements, to determine the frequency and the value of the harmonic current to be reduced.
- Electrical scheme of the system, with indication of the installation point of the filter.
- Presence of power factor correction equipment (automatic or fixed), type and location.
- Nominal data of other distorting loads present in the system.

Table

Code	Load Data			Filter Data				
	Max. power load U.P.S.	Pn^{1}	Rated current	In max. to be filtered at $250 \mathrm{~Hz}$	Qtot	Steps Combination	Type	Weight
	(kVA)	(kW)	(A)	(A)	(kvar)	(A)		(kg)
FAM 05 120-400	120	96	172	70	32	16+16	G6E	210
FAM 05 180-400	180	144	258	105	48	32+16	G6E	230
FAM 05 240-400	240	192	344	140	64	$22+22+22$	G6E	250
FAM 05 320-400	320	256	460	200	88	$44+44$	G6E	290
FAM 05 400-400	400	320	570	250	110	$44+44+22$	G8E	390
FAM 05 480-400	480	384	690	300	132	$44+44+44$	G8E	430
FAM 05 560-400	560	448	800	350	154	$66+44+44$	G8E (II)	560
FAM 05 640-400	640	512	920	400	176	$66+66+44$	G8E (II)	640
FAM 05 720-400	720	576	1040	450	198	66+66+66	G8E (II)	730
FAM $05800-400$	800	640	1150	500	220	$88+66+66$	G8E (II)	810
FAM 05 880-401	880	704	1270	550	242	$88+88+66$	G8E (II)	890
FAM 05 960-400	960	768	1386	600	264	$88+88+88$	G8E (III)	1020
FAM 05 1040-400	1040	832	1501	650	286	110+88+88	G8E (III)	1100
FAM 05 1120-400	1120	896	1617	700	308	$110+110+88$	G8E (III)	1180
FAM 05 1200-400	1200	960	1732	750	330	$110+110+110$	G8E (III)	1260
FAM 05 1280-400	1280	1024	1848	800	352	$132+110+110$	G8E (III)	1340

FAM05/07 is realized by appropriately tuning in frequency, a battery of capacitors and a three-phase reactance. In this way a resonant circuit is realized which is chosen as the preferred way from the harmonic current which is to be reduced, and is equipped with a microprocessor control system for inserting modules. Features:

- consisting of standard racks of equal dimensions connected to each other
- Easily increases the size of the filter
- prevents the insertion of filter groups L-C, having too high reactive power, bring the power factor of the load to a capacitive $\cos \varphi$, with possible consequent problems of DC drives.

PERFORMANCE DATA

- Ratedvoltage
- Rated frequency
- Insulationvoltage
- auxiliaryvoltage
- Overvoltage
- Temperature range
- Impulse withstand

TUNED FILTER
5° and 7° grade Harmonic

TECHNICAL DATA

Enclosures	Made of sheet steel, protected against corrosion by phosphating and epoxy powder coating. RAL 7035 colour (others on request). Degree of protection: external panel IP 31 (others on request); internal panel IP 20 at the input of power cables (IP 20 with open doors on request).
Ventilation	Forced.
Thermal protection	Made by means of two thermoprobes. The first, with an operating threshold of $35^{\circ} \mathrm{C}$, controls the insertion of the cooling fans on the roof. The second $\left(50^{\circ} \mathrm{C}\right)$ separates the filter branch if the temperature exceeds the maximum allowed limit. When the phenomenon ceases, there is automatic recovery.
Insertion	Manual, or automatic piloted remotely (commands by the installer).
Supply	To be carried out directly on the line choke or on the power supply of the fuses.
	Three-phase input + grounding cable from below for G6E and G8E cabinets. The termination of an NC contact of max 5 Amps 250 Vac for the remote indication of the operation of the equipment is provided by a terminal board. If not used, the remote control must be short-circuited.
Signals	On the front of each panel there is a luminous signal with green light for a live panel, the selector for the insertion of the filter with white light, the intervention of the amperometric protection with yellow light and the relative reset button, the intervention maximum temperature with yellow light signal..
3-pole contactors	Each battery is switched on / off by a three-pole contactor (Class AC6-b) to offer high reliability.
Fuses	Each capacitors bank is protected by fuses. The protection system of both the power circuits ($\mathrm{NH}-00$ curve gG fuses) and the auxiliary ones (isolable fuse holders and 10.3×38 fuses) foresees the use of high breaking power fuses (100kA).
Capacitors	Single-phase capacitors in self-healing metallized polypropylene (MKP), equipped with an anti-burst device and discharge resistance. They are impregnated in vegetable oil, PCB free. Delta connection. Type of continuous service. - rated voltage: 550 V ac - overvoltage: $1.1 \times \mathrm{A}$ ($8 \mathrm{~h} / 24 \mathrm{~h}$) - current overload: $1.3 \times \mathrm{ln}$ - capacity tolerance: $-5 \% /+10 \%$ - losses due to dissipation: $\leq 0.4 \mathrm{~W} / \mathrm{kvar}$ - temperature category: -25 / D

Filtering reactor	It is manufactured using magnetic low losses core plates and it is tuned with the capacitors. Class H and linearity up
	to 2 ln.
	• agreement frequency of 245 Hz and 345 Hz
	• losses due to dissipation: depending on the power of the filter

QUALITY AND TESTING

Regulations	Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment: IEC/EN 61439-1 / 2, IEC/EN 61921.
European directives	Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.
Testing	100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

CONFIGURATION

General notes

- The rated power is expressed at $400 \mathrm{~V}-50 \mathrm{~Hz}$.
- The choice of supply cables depends on the installation conditions, the length of the same and the ambient temperature. For a correct sizing, refer to the IEC 60364-5, CEI 64-8 and the UNEL 35024/01 standards.

The application of the filters involves an in-depth analysis of the operating conditions of the system.
Below is a list of the information essential for a correct sizing:

- Nominal data and operating cycle of the load to be filtered.
- Campaign of harmonic distortion measurements, to determine the frequency and the value of the harmonic current to be reduced.
- Electrical scheme of the system, with indication of the installation point of the filter.
- Presence of power factor correction equipment (automatic or fixed), type and location.
- Nominal data of other distorting loads present in the system.

Table

Code	Load Data			Filter Data				
	Max. power load U.P.S (kVA)	Pn^{1} (kW)	Rated current (A)	Max. current to be filtered at $250 \mathrm{~Hz}+350 \mathrm{~Hz}$ (A)	Qtot (kvar)	Steps Combination (A)	Type	Weight (kg)
FAM 05/07 120-400	120	96	172	70+25	48	32+16	G6E	230
FAM 05/07 180-400	180	144	258	$105+50$	80	$32+32+16$	G8E	340
FAM 05/07 240-400	240	192	344	$140+50$	96	$48+32+16$	G8E	360
FAM 05/07 320-400	320	256	460	200+100	132	$88+44$	G8E	430
FAM 05/07 400-400	400	320	570	250+150	176	$88+66+22$	G8E (II)	640
FAM 05/07 480-400	480	384	690	300+200	220	$88+88+44$	G8E (II)	810
FAM 05/07 560-400	560	448	800	350+250	264	$88+88+88$	G8E (III)	1020
FAM 05/07 640-400	640	512	920	400+300	308	$110+110+88$	G8E (III)	1180
FAM 05/07 720-400	720	576	1040	450+300	330	$110+110+110$	G8E (III)	1260
FAM 05/07 800-400	800	640	1150	500+300	352	$132+110+110$	G8E (III)	1340

Active
 Harmonics Filters

Active filters are the ideal solution to mitigate the most demanding harmonic currents, with any type of non-linear loads involved. Differential characteristics are the speed and linearity of response, together with the triple possibility of simultaneously compensate harmonics, phase unbalance and both inductive and capacitive power factor.
The modular configuration has been designed to be inserted in a cabinet delivered already wired and equipped with an automatic protection switch. The installation requires the connection of the power cables and the wiring of the signals from the 3 current transformers (CTs).
Alternatively the modules can be easily wall mounted; more modules can be connected in parallel to satisfy any need. The installation, to be done by the customer, must include also the upstream protection device.
MAIN TECHNICAL DATA

Rated Voltage
Supply
Power Size
Mounting
Response time
Harmonic orders compensation
Phase balancing
Power Factor Correction
Losses
Communication
Inverter topology
Protection degree
Workingtemperature
Noise
Altitude

230-690 Vac
Triphase, 3-wire or 4-wire (+neutral)
15 to 300 A modules
Wall or rack (for enclosure)
$<100 \mu \mathrm{~s}$
Up to 50th harmonics order (even and odd)
on the 3 phases
$\cos \varphi=-0.7 \ldots 1 \ldots 0.7$ (inductive and capacitive).
<3\%
Ethernet TCP/IP, Modbus RTU RS 485.
3 level NPC topology, IGBT
IP 20 (IP54 enclosures on request)
$0 . .40^{\circ} \mathrm{C}$
$<65 \mathrm{dBA}$
< 1000 m

Our Active Filter solutions and related datasheets are available upon request

QUALITY AND APPROVALS

Reference standards IEE 519, EN 61000-3-12
Certifications
CE, UL

Mechanical Drawings

2-door cabinet:

3-door cabinet:

G9E (II)
Cabinet for floor mounting
G9E (III)

2-door cabinet:

3-door cabinet:

Terms of use

The contents of this catalog and the logo are owned by COMAR Condensatori S.p.A.. It follows that they can not, either in whole or in part, be copied, reproduced, transferred, uploaded, published or distributed in any way without the prior written consent of COMAR Condensatori S.p.A.

Limitation of liability

COMAR Condensatori S.p.A. provides the information in this catalog deeming them accurate as of its publication date. In no case COMAR Condensatori S.p.A. will be held responsible for any direct or indirect damage caused by the use of this catalog. The information can be modified or updated by COMAR Condensatori S.p.A. without prior notice.

Do you have any other question? Feel free to ask:
export@comarcond.com

COMAR CondensatoriS.p.A. Via del Lavoro, 80 - Loc. Crespellano 40053 Valsamoggia (Bologna) - Italy
Tel. +39 051733383 - Fax. +39 051733620

[^0]: *indicative values

[^1]: Regulations
 Capacitors: IEC/EN 60831-1 / 2 certified by IMQ (V1927); Equipment:IEC/EN 61439-1 / 2, IEC/EN 61921.
 European directives
 Low voltage: 2014/35/CE; Electromagnetic compatibility: 2014/30/CE.
 Testing
 $\begin{aligned} & 100 \% \text { of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, } \\ & \text { battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested } \\ & \text { in three consecutive stages of the production process: after winding, regeneration and before labeling. }\end{aligned}$

[^2]: Testing 100% of the automatic equipment is subject to visual inspection, insulation test: phase-phase and phase-earth, battery efficiency and ventilation circuit control: the report is included in the documentation. The capacitors are tested in three consecutive stages of the production process: after winding, regeneration and before labeling.

[^3]: Other solutions are available on request.

[^4]: All automatic P.F.C.series, with ot without blocking reactors, can be realized with static insertion.
 Other solutions are available on request

[^5]: (1) Sizing realized considering the working load at full power and an average $\cos \varphi$ of the line $=0.80$

